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Introduction
We present a simple technique for easing the computation of spheri-
cal parameterizations by a simple modification of traditional planar
parameterization methods: our spherical energies differ from the
usual planar quadratic energies only by multiplication by a simple
factor based on the inverse distance of each triangle from the sphere
center, such as the following:

ETutte= d−2
min · ((xA−xB)2 +(xB−xC)2 +(xA−xC)2)

EDirichlet = d−2
min · (cot(α) · (xB−xC)2 +cot(β ) · (xA−xC)2

+cot(γ) · (xA−xB)2)

EArea = d−2
min ·Area2 · InputArea−1

The main motivation for scaling the planar energy byd−2
min is

to obtain anupper boundof the spherical integrals. Intuitively
this can be done by measuring the energy of each triangleafter
transforming it into the tangent space of the sphere. As we show
next,this extra term removes the usual need for repeated spherical
reprojections or for unnatural point constraints.

Analysis

In practice the factord−2
min is close to 1. Why is then such a minor

correction necessary? Let us examine what happens if we solve the
classic flat energies

Espring = wAB · (xA−xB)2 +wBC · (xB−xC)2 +wAC · (xA−xC)2

as discussed in [Floater and Hormann 2005] on the sphere. A
sequence of minimization steps typically looks like this:

As the iterations proceed in the solver a triangle starts growing.
Finally it slips over the “equator”, eventually shrinking the entire
mesh to a point. During this process, the energy isreduced in each
iteration step, finally reaching its minimum at zero. This failure
can be consistently observed. Our conclusion is that the spherical
spring energy has no minimum at the expected configuration.
Instead the minimizer moves down a continuous slope leading to a
collapsed configuration. We cannot fully explain this with Möbius
transformations, which are invariants of the continuous setting,
but do not leave the discretized energy constant. One common fix
for avoiding the complete collapse consists of constraining three
or more points. In practice the number of points varies with the
input mesh and selected vertices. Each additional point fixed also
introduces extra distortion. For these reasons it is desirable to
construct a method that does not require any additional constraints.

We decided to analyze the situation for various energies, like
EDirichlet andEArea [Floater and Hormann 2005]. The planar en-
ergiesalways underestimatethe integrals over spherical triangles.
This is easy to see for energies based on areas: the area of a pla-
nar triangle cutting through the sphere is always smaller than the
area of the corresponding spherical triangle. This is problematic,
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Figure 1:We computed parameterizations for several large (70k . . . 400k
triangles) meshes using the combined energy Ecombined with weightings
(1,1). No conditions were enforced during the solve, nevertheless the pa-
rameterizations are fold-free.

because the error increases disproportionately with triangle size.
Used in a minimization process this is a recipe for disaster: the
minimizer can find a way to decrease the energy by increasing
the size of the triangle with the largest error, creating slippage.

dmin

One way to avoid this situation is to design spherical
energies that are accurate for small triangles but other-
wise always overestimatethe continuous energy. We
show that this can be achieved by using the central
projection (or gnomonic map) which projects each flat triangle out-
wards until it is essentially tangential1, as done by the division with
dmin. A further consequence of this construction is the creation of
infinite energy barriers for hemispherical triangles.

Many planar energies, like MIPS and stretch, try to trade off angle
and area distortion. They can be written as combinations of Dirich-
let and area energies. For simplicity we have experimented with
weighted averages of these energiesEcombined= a ·EDirichlet + b ·
EArea and examples are shown below.

Tutte a = 1
b = 0

a = 1
b = 1

a = 0.2
b = 1

a = 0
b = 1

Results
We have implemented the modified energies presented here. There
is no need to write custom solvers; we use TAO [Benson et al.],
which provides implementations of standard Newton and trust-
region methods. There is no need to define constraints or repro-
jection during the minimization. The energies are defined in Maple
and are automatically differentiated and translated to C++. Run
times are within a few minutes for a 70k triangle mesh like igea.
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1There is one technicality here as obtuse triangles are only projected
until they touch in exactly one point, which is the center of the longest edge.


