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Singularity editing of a quadrangle mesh consists in shifting singularities

around for either improving the quality of the mesh elements or canceling

extraneous singularities, so as to increase mesh regularity. However, the

particular structure of a quad mesh renders the exploration of allowable

connectivity changes non-local and hard to automate. In this paper, we

introduce a simple, principled, and general quad-mesh editing primitive with
which pairs of arbitrarily distant singularities can be efficiently displaced

around a mesh through a deterministic and reversible chain of local topolog-

ical operations with a minimal footprint. Dubbed Q-zip as it acts as a zipper

opening up and collapsing down quad strips, our practical mesh operator

for singularity editing can be easily implemented via parallel transport of

a reference compass between any two irregular vertices. Batches of Q-zips

performed in parallel can then be used for efficient singularity editing.
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1 INTRODUCTION
Quadrilateral meshes (henceforth abbreviated as quad meshes) are a

popular choice of surface representation in shape modeling, texture

synthesis, and simulation due to the tensor-product nature of their

cells. The presence in a quad mesh of a large number of singularities

(i.e., irregular vertices that do not have four adjacent quad cells) is of-

ten deemed a nuisance: aesthetically, these topological defects break

the tensor-product symmetry and render the mesh unstructured;

numerically, these irregularities induce distortion in low-curvature

regions, thereby decreasing the accuracy of finite element compu-

tations and simulations. Mesh generation methods that globally

optimize the number and placement of singularities (see [Dong et al.

2006; Bommes et al. 2009] for early attempts, and [Ray et al. 2009;

Myles and Zorin 2013; Ebke et al. 2014, 2016; Huang et al. 2018;

Fang et al. 2018; Lyon et al. 2020] for more recent works) avoid this

problem to a large extent, but at the cost of high computational

complexity. Conversely, efficient quad meshing approaches, e.g.,

advancing front methods which propagate a layer of elements from

boundaries into the domain [Owen et al. 1999] or quadtree-based

methods [Rushdi et al. 2017] can produce millions of quads per
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Fig. 1. Automated singularity editing. We present Q-zip, an efficient
algorithm to displace singularity pairs to improve the regularity of a quad
mesh and/or its elements’ shape quality. The Q-zip primitive (top) can
automatically and efficiently edit a pair of nearby or faraway singularities,
see tawny “surgery path” linking singularities of type v3 (blue ball) and
v5 (orange ball). Starting from an irregular quad mesh (left: fertility model
containing 35.3% of singularities), a few batches of Q-zip operations (green
models, with Q-zips displayed in orange) followed by local smoothing cancel
out most singularities (right: 7 v3 and 31 v5 are left in the final mesh).

second in practice [Ansys 2020], but offer little to no control over

the number and placement of singularities. As a consequence, post-

processing algorithms that can improve an unstructured input quad

mesh by displacing or removing its singularities — and hopefully,

improving the shapes of its elements in the process — have been

highly sought after. However, mesh improvements are often limited

in practice to very localized or user-guided edits: existing singu-

larity editing approaches cannot handle distant singularities in a

general manner without generating a significant change in vertex

count (through chord collapses for instance). Exploring the large

space of quad mesh connectivity improvements automatically is

thus currently intractable for even moderately large meshes.

In this paper, we present a singularity editing primitive and its

algorithmic implementation, with which pairs of arbitrarily-distant

singularities can be efficiently moved around a mesh by applying a

chain of local topological operations with a minimal footprint.

1.1 Related work
The computational attractiveness of quad meshes for numerical

methods in geometry processing and simulation has led to the ex-

ploration of flexible and systematic ways to quadrangulate arbitrary

domains. Creating a quad mesh without any specific requirements

on size, regularity, or anisotropy is, in fact, trivial: one can sim-

ply convert any polygonal mesh approximating the domain into a

quad mesh through one step of Catmull-Clark subdivision [Catmull

and Clark 1978]. However, controlling the number of singularities

and the shape of quad elements is paramount in ensuring high nu-

merical accuracy in computations. Consequently, a large array of

meshing approaches have been devised over the years [Bommes
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et al. 2012] to help design quad meshes with various requirements.

Far less attention has been given to the post-editing (including mo-

tion and cancellation) of the resulting singularities: the non-local

constraints that a pure quad mesh structure imposes render the

design of algorithmic approaches dedicated to this task difficult or

computationally intensive. Yet, singularity editing is highly desir-

able since state-of-the-art automatic quadrangulation techniques

cannot rival the clean, high-level structures of carefully-designed

meshes that are manually created by specialists in gaming, anima-

tion, or simulation. Before explaining our contributions towards

this general goal, we first briefly review relevant techniques.

Decimating quads. A first family of approaches reduces the num-

ber of singularities in a mesh through mesh simplification — see,

e.g., [Daniels et al. 2008, 2009; Tarini et al. 2010, 2011; Xu et al.

2020]. These methods iteratively decrease the number of singulari-

ties by decimating an input quad mesh through local operations (e.g.,

quad collapse or doublet removal) and/or semi-global operations

(e.g., (half-)polychord removal, separatrix split between pairs of 5-

singularities, or separatrix collapse between pairs of 3-singularities)

that preserve boundary features. While such a strategy leads to a

drastic reduction in singularities, it is also computationally intensive

and changes the vertex count of the input mesh significantly.

Singularity editing. A sequence of well-chosen local edge flips,

vertex splits, and quad collapses can be an efficient way to re-

move extraneous singularities without affecting the vertex count

much [Docampo-Sanchez and Haimes 2019]. However, such a local

approach will stop improving the mesh once all the singularities are

sufficiently isolated from each other, rendering it useless on large

meshes. A template-based approach, such as Minimum Singularity

Templates [Verma and Suresh 2017], can efficiently remove singu-

larities that are further apart by finding convex patches of quads
containing three or more singularities, and comparing these patches

with a set of “templates” to determine whether the patch can be

remeshed with fewer singularities. Unfortunately, the number of

possible patches grows exponentially with their size, so finding

patches above a moderate size becomes intractable. Noticing that

separatrices between two singularities in a quad mesh are often long

and helical, Bommes et al. [2011] introduced a way to simplify the

base complex while keeping the singularities fixed. To achieve this

editing task, they introduce the notion of grid-preserving operation:
if a mesh surgery follows the rules induced by a finite automaton,

the result is guaranteed not to have additional singularities. This
concept was shown to be a generalization of the polychord collapse

introduced in [Daniels et al. 2008]. The work of [Peng et al. 2011],

building upon [Li et al. 2010], offered an even more general frame-

work for singularity editing: they demonstrated that one couldmove
certain pairs of singularities around a mesh without introducing ad-

ditional singularities and with minimal connectivity changes. Their
proposed mesh surgery is conceptually simple: one just has to split

an initial singularity to form a transient singularity pair, and then

“drag” this transient pair along a “surgery” path going through only

regular vertices and leading to the second singularity, with which it

will merge and recombine, resulting in an overall motion of the ini-

tial pair. Such a process offers efficient singularity editing, allowing

Fig. 2. Paths between singularity pairs. Even on a simple 3-hole mesh
with 4866 vertices, we easily find many pairs of singularities such that even
the shortest paths connecting them do not stay within a convex region free
of other singularities. Orange balls mark v5 vertices, while blue balls are v3
vertices; 82 such pairwise shortest paths are shown in various colors, many
having more than 4 left (or right) turns, i.e., the path would self-intersect if
laid out in the plane.

to move irregular vertices around to improve the mesh quality, can-

cel singularities, or both. However, Peng et al. [2011] do not provide
an automated approach or algorithm which can implement this idea

for any configuration of singularities. The user must thus manually

trigger selected edits on a case-by-case basis to reduce the number

of singularities, which can be a long and tedious task if a singularity

pair is not inside a convex region without any other singularities

— a case happening quite often on common meshes (see Figs. 2

and 12), yet not covered by the extensive analysis of [Peng et al.

2011]. Moreover, the consequences on the final mesh connectivity

of a change in the surgery path were not discussed.

1.2 Motivation
Based on prior work, we identified a few concepts and exigencies

which motivated and helped shape our contributions.

Need for singularity editing. Quad meshing has made impressive

advancements in the past two decades. Yet, several authors have

argued that it only makes the need for singularity editing more

pressing. For instance, an automatically-generated quad mesh is

easily perfectible in practice as it is often riddled with helical sepa-

ratrices as pointed out in [Bommes et al. 2011]. Peng et al. [2011]
also demonstrated that even meshes obtained from optimization

techniques such as Mixed-Integer Quadrangulation [Bommes et al.

2009, 2013] or wave-based anisotropic quadrangulation [Zhang et al.

2010; Fang et al. 2018] can be improved further via singularity edit-

ing — although most edits require user guidance as no automated

approach to achieve these improvements exists. Both papers also

noted that quad decimation techniques, which automatically sim-

plify the base complex on an input mesh at the cost of a drastic

change in vertex count, do not offer the kind of efficient connectiv-

ity improvement that is sought after: one has to work instead with

“grid-preserving operators”, i.e., chains of local mesh operations that

do not introduce additional irregular vertices [Bommes et al. 2011].

An automated singularity editing framework is thus needed if one

wishes to compete in regularity with hand-designed meshes.

Importance of singularity pairs. A number of techniques related

to singularity editing have noticed the key nature of separatrices,
which can be viewed as parameter lines connecting two irregu-

lar vertices. In fact, Bommes et al. [2011] showed that rectifying a
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few separatrices that are long and helical can already dramatically

improve the base complex of a quad mesh. Peng et al. [2011] also
showed that edits need to involve at least two irregular vertices as

one cannot requadrangulate a convex region containing a single

irregular vertex without introducing additional irregular vertices: a

singularity pair is thus the smallest possible editing operation that
does not increase the number of irregular vertices in the mesh. More-

over, the two singularities can be very close (even adjacent, i.e.,

sharing en edge, at its shortest) or quite distant: singularity editing

acting on a pair of irregular vertices thus covers the whole gamut

of local, semi-global, and global editing actions that previous works

focused on. Our contribution will exploit and generalize this funda-

mental editing operation on singularity pairs, which suffered a case

of arrested development for the last decade after the publications
of [Peng et al. 2011] and [Bommes et al. 2011].

1.3 Contributions
Building upon prior work, we contribute in this paper a novel and

general grid-preserving operator between any two singularities that

we call Q-zip. This canonical quad editing primitive displaces two

singularities in concert by one edge relative to the remainder of

the mesh through a sequence of localized edge splits and quad col-

lapses performed along an arbitrary simple edge path joining two

singularities. Q-zip is a zipper-like, general variant of the pairwise

operation proposed in [Peng et al. 2011] that does not restrict the

valence of vertices along the path between the two singularities.

It is also automatically grid-preserving (i.e., it does not introduce

additional singularities), without the need for an automaton as pro-

posed in [Bommes et al. 2011], through the use of parallel transport.

We also prove that the effect of a Q-zip operation on the connectiv-

ity of the mesh is unique for all edge paths in the same homotopy
class, reinforcing our claim of its canonical nature. This versatile

connectivity operation can then be used to explore connectivity

optimization through, e.g., repeated Q-zips in order to reduce an

energy functional as we will demonstrate.

2 SINGULARITY PAIR MOVEMENT
We now delve into our approach to move a given pair of singularities

of a pure quad mesh through the Q-zip algorithm by performing

mesh surgery along a simple path between singularities.

2.1 Definitions and assumptions
While we will mostly use conventional nomenclature, we start this

section with a brief recap of the basic definitions of terms and

concepts that we will use throughout the remainder of the paper, as

well as our assumptions on the input quad mesh.

Mesh terminology. We assume that an input mesh M is a regular

CW-complex formed by the collection of a vertex setV , an edge set

E, and a face set F such that the boundary of each face is a set of

four edges in E (forming a quadrangle), and the boundary of each

edge is formed by two vertices in V . (We will also discuss the case

of hybrid meshes, with both triangles and quadrangles, in Sec. 3.2.)

The mesh is further supposed to be isomorphic to an orientable 2D

surface (i.e., it tessellates a 2-manifold), possibly with boundary. The

valence of a vertex denotes the number of its incident edges, so a

Fig. 3. Canonical operators. The collapse operation deletes a quad, a
vertex, and two edges, while the split operation forms a new quad, a new
vertex, and two new edges. Q-zip editing only applies a series of these
operations along a surgery path to shift a pair of irregular vertices.

vertex is regular if its valence is 4, and called a singularity otherwise.

Note that we will use v3, v4, and v5 as shortcuts to refer to valence-3,

valence-4 and valence-5 vertices respectively.

Simplifying assumptions. In the remainder of this section, we

simplify our explanations by assuming, without loss of generality,

that all interior vertices inV have valences 3, 4 or 5. This constraint

is easy to enforce in a preprocessing step: a valence-2 vertex can be

directly removed (reducing the valence of each of the two adjacent

vertices by one); and any vertex of valence 6+ can be split into

vertices of lower valences. Note that our connectivity editing tool

will not introduce any valence-2 or valence-6+ vertices, so this step

only needs to be done once.

2.2 Foundations of Q-zip
We begin our exposition with a few principles upon which our

method builds, both for simplicity and efficiency.

Two atomic topological operations. In order to avoid requadran-

gulating entire regions from scratch, connectivity editing should

proceed through local topological operations with a minimal foot-

print that preserve the Euler characteristic 𝜒 = |V|−|E|+|F |. Two
atomic operations, called quad collapse and vertex split, involve the
least amount of changes in the mesh connectivity while keeping

only quad faces in the mesh: removing (resp., adding) a quad simul-

taneously involves the merging of two edges (resp., the splitting of

an edge in two) and the merging of two vertices (resp., the splitting

of a vertex into two), see Fig. 3. We will express our algorithm using

only these two canonical operations as they are known to generate

all others (more involved) quad-mesh topological changes, such as

edge rotations; moreover, since they are inverse of each other, it

will allow us to easily undo a surgery sequence if needed.

Strip insertions and deletions. Applying a quad collapse or a vertex
split on a quad mesh does not generate non-quad faces, but it affects

the valence of the neighboring vertices: as Fig. 3 indicates, a collapse

increments the valence of each of the two merging vertices by one

while decreasing by one the valence of the two other vertices of the

collapsed quad — the same happens for a vertex split with opposite

valence changes. Thus, applying these two operations arbitrarily

is bound to introduce a large number of new irregular vertices.

However, a serial application of collapses along a strip of contiguous
quads cancels valence changes along the strip, leaving only two

changed valences at each end of the stitched-up strip; this is, in fact,

a simple case of the traveling transient 3-5 pair proposed by Peng
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et al. [2011]. Similarly, a serial application of splits along a simple

edge path adds a quad strip to an existing mesh with, again, only a

pair of changed valences at each extremity.

Chained operations between singularities. Noting that a strip dele-

tion followed by a strip insertion starting on the last stitched edge

also cancels out two valence change pairs, we can further chain

a number of strip insertions and deletions together, leaving no

changed valence behind except at the beginning and the end of

the chain, see Fig. 4. It is thus particularly strategic to have these

chained topological surgeries start and end at irregular vertices: it

will induce a move for this pair of irregular vertices as advocated and

analyzed in [Peng et al. 2011]. Repeated movements of 3-5, 3-3, and

5-5 vertex pairs can then be the basis of editing techniques seeking

a reduction in the number of irregular vertices, or an improvement

in the mesh elements’ quality.

Fig. 4. Chained strip operations. Three strip collapses (in red) and one
strip split (the soon-to-be-formed quads are in blue) chained up serially on
a quad mesh only result in a pair of valence changes at both ends.

Automated singularity editing. While moving pairs of irregular

vertices in [Peng et al. 2011] was mostly user-driven, handling large

quad meshes can only be achieved through a fully automated ap-

proach which can systematically edit arbitrary meshes through

this pairwise-editing primitive: although local mesh editing could

enumerate all possible valences and boundary presence in a small

neighborhood and form associated templates, large-scale mesh sur-

gical operations must proceed in a methodical fashion to handle all

situations simply and reliably in a grid-preserving fashion. Thus,

finding automatically a series of chained operations between a given

singularity pair that induces the desired pairwise motion is key.

Generality. Finally, we seek an approach general enough to guar-

antee that any pair of irregular vertices, however close or remote,

can be potentially moved: they should not be artificially obstructed

by unnecessary topological constraints if we want our connectivity

tool to be usable at any scale. We prove that our operators pro-

vide equivalent connectivity editing through arbitrary homotopic

paths between pairs of irregular vertices, even when these paths

run through nonconvex regions on meshes such as in Fig. 12. This

very general algorithm guarantees that performing a pairwise move-

ment of irregular vertices through chained operations along two

different paths starting and ending at the same vertices results in

isomorphic meshes if the paths are homotopic to each other within

LS

RC RS

LC

LS

LC

RC RS

Fig. 5. Compass of strip operations. Four strip operations (RS for right-
split, LS for left-split, RC for right collapse and LC for left collapse) are
indicated by a “compass”, to keep track of the operations to perform.

a regular region, i.e., if one can deform one into the other without

sweeping over irregular vertices. Moreover, while one may want to

operate along a shortest path between two singularities to minimize

the amount of editing operations, the grid preserving movement

of irregular vertices through Q-zip can operate on arbitrary simple

paths that may intersect other singularities or even encroach on

boundaries, proving its robustness.

Compass of actions. One key ingredient to achieving our goals

based on the concept of topological “surgery” of quad strips is to

consider the four distinct types of strip operations: as sketched

in Fig. 5, they are what we call right collapses (or RC, where all

quads are collapsed towards the right along the strip, see left), left
collapses (or LC, where all quads are collapsed towards the left along
the strip, see bottom), right splits (or RS, where quads are created
on the right of the path through splits, see right), and left splits
(or LS, where quads are created on the left of the path through

splits, see top). These four possible strip operations can be chained

together as explained earlier; moreover, the compass summarizing

these operations, drawn in the middle of the figure, helps keep track

of the canonical directions that each operation affects. Therefore,

if we were to carry, or more precisely “parallel transport”, this

compass along a series of chained strip operations on a regular

quad mesh as in Fig. 4, the hand of the compass aligned with the

next edge on which to operate actually indicates which operation

(out of LS, RS, LC, or RC) has to be performed. If we follow the

instructions provided by this compass (which are akin to the states of
an automaton [Bommes et al. 2011]), we guarantee that no irregular

vertices can be created along the “surgery” path. This simple, but

powerful concept of a parallel-transported compass will be the core

of our approach, and will ensure its generality.

2.3 Overview of the Q-zip primitive
Based on these foundations, we define a Q-zip operation on two

arbitrary singularities as the overall grid-preserving mesh surgery

that is achieved in four simple and distinct steps:
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v3

v3
(1)

(2) (3)

(4)

(3)

(4) (1)

(2)

v5(2) (3)

v5
(1) (4)

(3)

(4) (1)

(2)

(1)

(2) (3)

(4)

(1)

(2)

(4)

(3)

Fig. 6. Singularity pair movements. For any of the four possible move-
ments (arrows) of a singularity, there is a unique corresponding movement
on the other singularity in the pair. Left, a mesh example for a 3-5 pair; right,
a schematic description of a similar behavior for 3-3 and 5-5 pairs.

1○ Surgical sketching: Once two singularities have been selected, we
compute a simple edge path joining them: it defines a surgical
path along which the Q-zip operation will be performed. See

Sec. 2.4 for details.

2○ Surgical planning: From one of the two singularities (picked ran-

domly), and based on where we want this singularity to be dis-

placed towards, we propagate a compass along the vertices of
the surgical path through parallel transport. This compass, keep-

ing track of the (𝑢, 𝑣) directions relative to the singularities, will

allow us to plan the surgery: instructions regarding whether a

split or collapse needs to be performed locally will be directly

read off from the compass at each vertex along the surgery path

as we will detail in Sec. 2.5.

3○ Surgery preparation: We then perform minor adjustments of the

surgery path and its compasses restricted to the one-ring of each
singularity (i.e., for the first and final few operations) in order to

ensure an exception-free overall surgery as reviewed in Sec. 2.6.

4○ Surgery execution: The actual surgery then serially follows the in-
structions given by the compass as one travels along the surgery

path. Resulting changes to the mesh thus fall in two categories:

a) the surgery footprint, which contains all the mesh elements

that have disappeared (quads through collapses, edges though

split), and b) the surgery scar, which contains the new mesh

elements (quads that appeared out of split operations, and edges

through which quads collapsed); see Sec. 2.7.

We now cover how to perform each step in detail.

2.4 Surgery sketching
From two chosen irregular vertices of an input mesh, we first plan a

Q-zip surgery to displace them by selecting an edge path connecting

them, then explore the four possible ways to move them around.

Surgery edge path. The precise selection of the path (i.e., a series

of connected edges joining the two singularities) is entirely up to

the user, but the edge path should be simple (not having repeating
vertices) to allow for trivial reversibility of the Q-zip operation. A

valuable choice is to compute a shortest path in between the two

singularities, through, e.g., Dijkstra’s algorithmwhere each edge has

a unit weight as it will minimize the number of splits and collapses

of the surgery; we can even incorporate high-level strategies in this

path search, by for instance increasing the weights of the edges we

really do not want altered, or to tweak the BFS search to explore

non-boundary vertices first to avoid affecting boundaries as much

as possible. We will from now on refer to the resulting simple edge

path as the surgery path. Finally, we arbitrarily assign an orientation

to this path, thus now classifying the two singularities into an initial
singularity, and a terminal singularity.

Four possible movements. Because Q-zip leads to a shift of the

initial singularity by one edge, the vertex that is currently the initial

singularity will turn into a regular vertex; thus one can think of

the surgery as having four possible effects: the initial singularity

will end up at one of the four neighbors of the newly-affected ver-

tex where the singularity used to stand. This is precisely one of

the contributions of Peng et al. [2011], who showed that a pair of

singularities could only move in one of four directions (Fig. 6). In

the case of our Q-zip operator, we can simply pick a random oper-

ation (LS, RS, LC, RC) to kickstart the whole surgery: each choice,

which we denote as the initial operation, will correspond to one

of the four possible directions. The other operations will lead to

different surgeries, displacing the singularity pair in three different

directions.

(A) (B) (C) (D)

Fig. 7. Parallel-transport of compass. Here, we depict a few examples of
parallel transport of the compass along the surgery path. Cases (A) and (D)
start with LS and RS respectively, so there are no compasses labeled on the
starting vertex (red). On the contrary, cases (B) and (C) start with RC, so
the starting vertex is labeled with a command corresponding to the hand of
the compass aligned with the first edge.

2.5 Surgery planning
For a given surgery path and one of the four choices for the initial

operation, we assign a compass (see center of Fig. 5) at each vertex.

In our visualization, we always align one of the four directions of

the compass with the next edge along the path; our code proceeds

similarly, in the sense that we tag each vertex with the operation (RS,

LS, RC, or LC) indicated by the compass hand pointing towards the

next edge. Assigning the proper operation per vertex thus requires

a very simple rule, best understood as parallel-transporting a frame
as it keeps track of the four directions corresponding to an implicit

choice of (𝑢, 𝑣) coordinates at the beginning singularity. First, we
initialize the first vertex of the surgery path with the initial operation
tag, i.e., one of the four possible motions of the original singularity;

this amounts to orient the compass at the beginning of the surgery.

Then we propagate the compass through the surgery path, assigning

the operation on the next vertex of the surgery path as follows:

• if the next vertex is regular (v4), we implicitly translate the com-

pass from the current vertex to this vertex, and store at this vertex

the operation that is indicated by the compass hand pointing

towards the next edge. In other words, if the path goes straight

at this next vertex, we keep the same tag as the previous vertex;
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Fig. 8. Compass transport for singularities along surgery path. If an
irregular vertex is encountered along the surgery path and the previous edge
is either LS or RC, we define the notion of parallel-transport of the compass
simply based on the number of quads on the left side of the surgery path
at the singularity: a single one (left) amounts to a left turn, two (middle)
amount to going straight, while three or more (right) imply a right turn. We
adopt a mirrored convention for the RS and LC cases.

if the path turns left (resp., right), we pick the next counterclock-

wise (resp., clockwise) operation on the compass, see Fig. 7.

• if the next vertex is irregular, parallel-transporting our com-

pass needs to be properly defined, and there are in fact multiple

options one could choose from. We opted for a simple determin-

istic rule to handle this case as it makes the code simpler while

offering a robust solution with no adverse impact other than

systematically picking just one of the many ways with which

one could proceed. When we reach a singularity and we try

to parallel-transport the compass to the next vertex along the

surgery path, we count the number of quads on the left of the

surgery path that are adjacent to the singularity if the previous

edge is LS or RC. If only one quad is present, we consider this a

left turn; if two quads are present, we consider that this corre-

sponds to going in a straight direction; if three or more quads

are present, we consider that a right turn is happening. If the

previous edge is RS or LC, we count from the right-hand side

instead. We then assign the appropriate tag based on this change

of direction, i.e., we keep the same tag if we go straight, or we

pick the next counterclockwise (resp., clockwise) operation on

the compass if the path turns left (resp., right), see Fig. 8.

This process is stopped when we reach the terminal singularity.

With our choice of parallel-transport for singularities along the path

(which is actually a simple extension of the regular case as they

match if there are three or less quads to the left of the surgery path

at each path vertex), our implementation allows irregular vertices

along the surgical path: it simply amounts to assuming that one

of its incident edges is a boundary edge, or equivalently, that we

consider the actual path as winding around the singularity without

having to actually alter the path (and risk more special cases to have

to deal with if we were to do so).

Realizable motions. We note here that the four possible types of

initial operations at the starting singularity lead to a specific terminal

operation stored on the final singularity, thus imposing on this

irregular vertex a corresponding movement, out of its four possible

ones. This exactly reflects the contribution of [Peng et al. 2011] that

elucidated the possible pairwise motions of singularities. Note that

we will provide a proof of invariance of the editing procedure up to

homotopy in Sec. 3.1; therefore, this four-motion property holds for

any simple path in a simply-connected region. Moreover, our use

of a parallel-transported compass also implicitly enforces the grid-

preserving property pointed in [Bommes et al. 2011] described via

an automaton, as we keep track of the four canonical directions of

a regular grid along the way. However, for an arbitrary input mesh,

a given pair of singularities may not be moved in four different

directions — not because of topological constraints on Q-zip, but

because of the properties of the input mesh along the surgery path.

For instance, if one of the singularities lies on a boundary, this

may severely restrict its movements; similarly, if the surgery path

goes through a one-quad-wide bottleneck of the mesh, some of

these operations assigned by our compass may not be realizable;

or the surgery involves collapsing a quad we want to preserve at

all costs for instance. Thus, at this stage, we quickly make sure

that each tag assigned along the surgery path corresponds to a

realizable operation; if there is not enough room to perform the

designated operation, we simply cancel the corresponding surgery,

thus removing one possible motion for the pair of singularities.

2.6 Surgical preparation
Before performing surgery on a pair of singularities, we may need

to adjust the surgery path and compass assignments slightly to

guarantee an exception-free surgery: we modify the extremities of

the surgery path and their actions to account for the fact that the

final split or collapse may need extra care to end properly. This

initial and terminal alteration of the surgery path, strictly restricted
to the one-ring of the two singularities, is the last needed preparation,
so that a systematic application of chained mesh operations can be

performed without having to deal with special cases later on. At the

start of the path, only three cases can present themselves:

• If we start from a valence-3 singularity with a (left or right) split,

or if we start from a valence-5 singularity with a (left or right)

collapse, the simple path in the direct vicinity of the singularity

(i.e., in the one-ring neighborhood) does not need to be adjusted.

However, for a v3 starting with a (left or right) split, the first

operation tag is changed to no-op.

• If we start from a v3 with a left (resp., right) collapse, we start the

surgical path from the adjacent vertex on the left (resp., right)

of the singularity corresponding to the tail-end vertex of the

collapse, and follow the border of the one-ring neighborhood to

reconnect to the original edge path, see Fig. 9(a). The first vertex

of the adjusted new path keeps the original starting tag (i.e., left

(resp., right) collapse), and the second vertex is assigned a right

(resp., left) collapse tag at the turn so that they are all consistent

w.r.t. parallel transport, independent of their respective valences.

• Similarly, if we start from a v5 with a left (resp., right) split, we

start the surgical path from the adjacent vertex on the left (resp.,

right) of the singularity corresponding to the end vertex of the

split, see Fig. 9(b). This prepended edge will serve as a guide

for the first split: this new edge and the former first edge of the

surgery path defines the (left or right) split operation. Conse-

quently, the new initial vertex of the surgery path is assigned a

no-op tag as it is only there to help handle the next vertex.

Conversely, the end of the surgery path is adjusted as follows:

• No adjustment is needed if we end at a valence-3 singularity.
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• When the surgery path ends at a v5 with a left (resp., right)

collapse tag, we end the surgical path at the closest neighbor on

the left (resp., right) side where the collapse ends, see Fig. 9(c).

The action tag of this vertex right before the last v5 is thus

changed from a left (resp., right) collapse to a right (resp., left)

split, reflecting that the compass stays the same but we change

the “next edge” direction. Accordingly, the new final vertex is

tagged as a left (resp., right) collapse.

• When the edge path ends at a v5 with a left (resp., right) split,

we end the surgical path at the farthest neighbor on the right

(resp., left) side where the split ends, see Fig. 9(d). This added

final edge just helps us define the endpoint of the last split action.

Consequently, this new terminal vertex of the surgery path is

simply assigned a no-op tag.

or

Fig. 9. End-point adjustments. For an initial v3 (top left), (left or right)
collapses start at the vertex to the corresponding side of the v3. For an
initial v5 (bottom left), splits start with the backward neighbor on the
corresponding side. For a final v5 (top right), collapses end at the closest
neighbor on the corresponding side, while splits end on the farthest neighbor
on the corresponding side. Finally, if the surgery path folds onto itself in
the one-ring of the final singularity (bottom right), we simply cancel the
edges being crossed twice in opposite directions.

Clean-up of adjustments. Finally, if any surgical path edge ends

up overlapping another due to the adjustments we performed, we

cancel them out in pairs as shown in Fig. 9 (bottom right), and adjust

the action tags accordingly so that the local change of trajectory is

accounted for while keeping the local direction of the compass un-

changed. These minor adjustments allow Q-zip to work seamlessly

and without templates for any pair of singularities, whether they

are just adjacent or far away from each other.

2.7 Q-zip execution
Once all the vertices of a surgery path have been labeled with a

local topological operation, the Q-zip surgery is trivial to execute.

Serial execution. From the first vertex of the surgery path, we

begin performing the labeled operations serially as we travel along

the path, and stop at the last vertex (which is either the second

singularity, or one of its direct neighbors based on the adjustment

that was performed). The execution of Q-zip is rather trivial and

requires no special care: from a compass tag at a vertex and knowing

the edge right before and right after the vertex along the surgery

path, we can blindly apply the topological changes indicated in

Zipper Path execution detail: single operation

?

LC RC LS RS

Figure 101a: Single operation at a vertex given the action type from compass. Notice that for LS and RS, the action is the same, but how we choose 
new edges as simple path differs. This differs for the split operation at the next vertex, since a split action need to be define by a pre‐edge and a next‐
edge.

Fig. 10. Surgical instructions. Four atomic operations instructed by the
hand of the compass. From left to right: left collapse (light green), right
collapse (dark green), left split (light orange), and right split (dark orange).

Fig. 11. Q-zip in action. As Q-zip is executed, a transient 3-5 pair travels
along the surgery path as quads are successively collapsed or created via
edge splits, until the pair encounters the final v3, creating a regular vertex.

Fig. 10, independent of the valences of the vertices involved as the

path and compasses have been specifically designed to account for

all cases seamlessly — see Fig. 11 for a concrete occurrence on a

mesh. However, when a singularity is passed as we move along

the surgical path, two exceptions can happen after the topological

operation at the irregular vertex has been executed: the merging

of two v3’s into a valence-2 vertex, or the merging of two v5’s

into a valence-6 vertex. In both cases, a simple post-processing

suffices: the valence-2 vertex is removed with the introduction of

two v3’s, and the valence-6 vertex is split into regular vertices with

the introduction of two v5’s.

Footprint and scar. Notice that the chained topological operations
that Q-zip executes only add or remove quad strips. The effect of the

Q-zip surgery is thus quite obvious: the surgery footprint over the

mesh is the union of all the elements that were removed as a result of

the surgery (i.e., quads that got collapsed, and edges which got split);

inversely, the leftover “scar” is the union of all new elements (i.e.,

quads that got created through splits and edges which got formed

through collapses). Both these regions share the surgery path edges,

by definition. If smoothing needs to be performed following a Q-zip

operation, we know precisely which parts to target.

2.8 Discussion
As promised at the beginning, our Q-zip primitive and its associ-

ated algorithmic implementation is very general: our few parallel-

transport rules and extremity adjustments make the overall algo-

rithm apply for v3-v5, v3-v3, and v5-v5 pair movements, whether

irregular vertices are present along the surgery path or not. This

significantly increases the applicability of Q-zip , and renders its
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Fig. 12. Spiraling features. Reducing the number of singularities on this
mesh with spiraling sharp features (left) forces long surgery paths (middle)
to act on pairs of remote singularities; Q-zip can handle this case without
difficulty (right): while the initial mesh has 55 v3, 43 v5, and 2 v6+, the
resulting mesh after Q-zip surgeries has only 16 v3 and 8 v5.

application totally automated; it can even be reverted without hav-

ing to store the intermediary steps as starting a surgery from the

opposite singularity and with a compass rotated by 𝜋 just undoes

the former Q-zip operation. Note that we omitted a discussion on

self-intersecting paths, since they are rarely useful in practice; but

they can be decomposed into the union of loops and simple paths if

they are needed, provided that the loops are not around singulari-

ties. Finally, we reiterate that the way we incorporated a notion of

parallel transport for the action compass is, in essence, a substitute

to the automaton concept introduced in [Bommes et al. 2011] to

guarantee a grid-preserving operator, providing also a more geo-

metric understanding of why chained topological changes of quad

strips creates no new singularities.

3 ANALYSIS AND EXTENSION OF Q-ZIP
We now provide an analysis of our Q-zip operator, proving that the

path used between two singularities actually does not affect the

result of the surgery as long as the surgery path remains within the

same homotopy class. We also extend our novel operator to the case

of hybrid meshes, i.e., for meshes containing mostly quads but also

a few triangles as often found in practical applications.

3.1 Topological analysis of Q-zip
Our Q-zip procedure inherits a strong topological property from

its principled design: for a given singularity pair and a choice of

one of the (maximum) four possible displacements of one of these

singularities, the resulting meshes after a Q-zip operation along

homotopic simple surgical paths are isomorphic. In other words, the

actual surgery path is mostly irrelevant (up to its winding around

other singularities) to the produced mesh: this property makes Q-zip

canonical. We provide next a description and proof of this property

for completeness.

Given a starting singularity 𝑣𝑠 and a terminal singularity 𝑣𝑡 on a

quad meshM, consider two simple surgery paths 𝑝1 and 𝑝2 connect-

ing them. Based on our treatment of singularities along the path, we

consider the path to be on the left or right of the singularity based

on our deterministic rule. Two paths are called homotopic if we can
continuously deform one to the other without crossing any other

singularity (which are considered as punctures) on the surface; the

same holds on a quad mesh, where now the deformation of the path

is done one quad at a time, so the two surgery paths are homotopic

if they bound a region formed by unions of regular quads. With

these definitions, we proceed to prove the following statement.

≠

=

(a)

=

=

(b)

(c) (d)
Fig. 13. Illustrations for the proof. (a) Equivalence under homotopy. (b)
Resulting mesh isomorphism for a single quad loop implies isomorphism for
a union of loops. (c) For a simply connected region, intersecting homotopic
paths can be reduced to case (b). (d) Homotopic paths (blue and red) are
lifted to paths with same endpoints in the universal covering. Note that the
green path is not in the same homotopy path as it is lifted to a different
copy of the endpoint in the universal cover.

Theorem. If 𝑝1 and 𝑝2 are homotopic inM, then the meshes re-
sulting from running Q-zip along 𝑝1 and 𝑝2 are isomorphic.

Proof of Theorem. First, we note that any two consecutive edges

in the surgery path that are on the same edge with opposite direc-

tions, i.e., a local path of the form 𝑣→𝑤→𝑣 that goes from vertex

𝑣 to another vertex𝑤 and then immediately back to 𝑣 , would result

in a collapse and a split that cancel out each other. Thus, we can

repeatedly remove such “folded” cases, see Fig. 13(a). Note that this

does not imply that homologous paths lead to equivalent mesh edits

in general since the same edge may carry a compass pointing at a

different direction after looping around a singularity.

Next, it is trivial to verify that for any compass, following a path

containing a loop around a single quad will locally result in two

splits and two collapses. Thus the resulting mesh is isomorphic to

the mesh before these four operations. By repeatedly applying the

above isomorphism, we can thus see that a loop around a union of

quads can be removed from a surgery path (Fig. 13(b)) without affect-

ing the mesh connectivity. Now, for a simply connected surface, any

two non-intersecting paths form the boundary of a topological disk,

which is a union of quads—so the equivalence for Q-zip running on

either path follows in such a case. If the two paths intersect as in

Fig. 13(c) instead, call the intersection between 𝑝1 and 𝑝2 closest to

the starting vertex 𝑣𝑠 on 𝑝1 is 𝑣𝑖 . The surgery segment 𝑠1 between

𝑣𝑠 and 𝑣𝑖 on 𝑝1 and the segment 𝑠2 between 𝑣𝑠 and 𝑣𝑖 on 𝑝2 have

no intersection other than the start and end vertices, thus the two

segments result in isomorphic edited meshes. The segments that

are left can be denoted as 𝑝 ′
1
and 𝑝 ′

2
. If they result in isomorphic

edited meshes as well, the concatenation of chain operations results

in equivalent editing implied by the composition of the two isomor-

phisms. Thus, the equivalence between 𝑝 ′
1
and 𝑝 ′

2
can be established

through recursion, which always terminates as segment lengths

always decrease. In our illustrative example, as 𝑝 ′
1
and 𝑝 ′

2
are not

intersecting, it terminates after the intersection 𝑣𝑖 is processed.
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VE

LE RE

EV

(a) (b)

Fig. 14. Hybrid Q-Zip. Given an isolated triangle in a sea of quads, the
connectivity can be locally updated so that this triangle moves by one edge
in four possible directions, similar to the general case discussed in Q-zip and
still resembling a zipper-like surgery. The four operations are vertex split
to edge (VE), edge collapse to vertex (EV), left edge flip (LE) and right edge
flip (RE). The parallel-transport of this hybrid compass along the simple
path contains a small rotation as an indication of where the base edge of
the triangle is (i.e., the EV direction), after the tip is shifted to the current
node on the simple path. If EV points towards an existing vertex, that vertex
will be split into an edge when the triangle reaches the compass location.

Finally, to show the equivalence for arbitrary topology, we can

simply invoke the universal cover of the quad mesh. Recall that a

covering space of a quad mesh M consists of another quad meshM
and a continuous surjective map 𝜋 :M→M satisfying the condi-

tion that, for each point 𝑥 ∈ M, there exists an open neighborhood

𝑈 of 𝑥 such that 𝜋−1 (𝑈 ) is the union of disjoint sets, each of which

is mapped homeomorphically onto 𝑈 by 𝜋 . A universal cover is

then a covering space that is simply connected, i.e., any loop in this

space is homotopic to a point — for more background, see [Hatcher

2002; Yin et al. 2007; Kälberer et al. 2007]. Now, when two paths

are homotopic, they lift into two paths with the same starting and

ending vertices in the universal cover, which is a simply connected

space, thus completing the proof (see Fig. 13(d)). Of course, when

the paths are not homotopic to each other, these paths lifted on the

universal covering will not share the same starting and end vertices,

leading to potentially different post-surgery connectivity. □

3.2 Q-zip for triangle-quad meshes
In engineering applications, the use of quad-dominant meshes is

commonplace — especially because many fast quad meshing tech-

niques end up having sparse triangles among mostly quad elements,

to adjust the local edge flow densities without having to change the

directions of quad edges as shown in Fig. 14. We can easily extend

our Q-zip editing tool to handle such meshes, where the triangles

are composed of one v5 (tip), and two v4.

Dealing with triangles along Q-zip path. When a Q-zip surgery

path comes in contact with a triangle, its three edges can be treated

as boundary edges: this ensures that a quad collapse operation will

not be attempted on the triangle. Of course, an alternate solution is

to simplywind the path around the triangle when possible, removing

the issue altogether. No other aspect of Q-zip needs to be altered.

Q-zip for a triangle. Moving a triangle within a quad mesh has

already been proposed, see for instance [Tarini et al. 2010], in their

Section 6.1: triangles can be made to “crawl” over the hybrid mesh

toward each other until they can be merged into quads. In fact,

this well-known property is, in disguise, a Q-zip operation itself.

Recall that our chained sequence of local split and collapse operators

can be seen as a zipper that changes the number of edges when

moving along two directions. Now, moving the tip of the triangle

also amounts to creating a sequence of vertex splits or edge collapses

as sketched in Fig. 14: when moving along the direction pointed

by the triangle, it unzips (going up) or zips up (going down) the

edges along the path; when moving sideways, it just reconnects the

edge paths along the direction of the triangle. More precisely, while

Q-zip is in essence the transportation of a transient adjacent 3-5

pair, we can interpret this hybrid Q-zip as the transportation of half
of a transient 3-5 pair, aligned to one of the 4 edge directions in the

regular region. So moving the triangle by one edge in one of the four

possible directions is, itself, a Q-zip operation! However, just like

when one moves an adjacent 3-5 pair, there is no need to use the full-

blown Q-zip algorithm we described above: everything is local, thus

only requiring four templates to implement the four movements

allowed for a triangle. For longer migrations, however, the same

compass idea applies, as explained in Fig. 14. The only additional

detail is the connectivity changes that happen when triangles collide.

When two oppositely oriented triangles collide, the connectivity

becomes regular; when two orthogonally-oriented triangles collide,

they form a transient adjacent 3-5 pair. Two same-direction triangles

can also collide, in which case a pair of v3 and v5 end up on two

opposite sides of a quad, see Fig. 15.

4 RESULTS
As we explained until now, Q-zip is a topological editing primitive

that extends localmesh operators such as quad collapse, edge split, or

edge rotation to arbitrarily-long topological operators. It can thus be

useful in a variety of scenarios involving mesh optimization, varying

from global structure optimization of quadrilateral meshes to the

quality improvement of mesh elements according to a prescribed

quality measure for quads. A typical utilization of Q-zip would

explore connectivity changes and decide which pairs of singularities

to move in order to improve a predefined “score” for the mesh, such

as the number of singularities in the simplest case or more specific

and/or complex quality measures in more practical cases. Q-zip

operations would also be interleaved with local mesh smoothing

in order to improve the mesh quality, in particular around surgical

scars, until no further Q-zip leading to improvements can be found.

Note that given the fact that our Q-zip operations involve arbitrary

long distances, this exploration is much less likely to fall into local

minima than if only local topological changes were considered.

Fig. 15. Merging triangle pairs into quads. The orange vertices show the
locations of possible singularities after the merging of two triangles.
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4.1 Automatic Q-zip batches for connectivity optimization
In order to demonstrate the robustness, usefulness, and efficiency of

Q-zip, we implemented an automatic tool which, from an arbitrary

quad mesh input, performs repeated Q-zips in order to reduce the

number of singularities while improving the isotropy and unifor-

mity of the mesh elements. Countless variants are simple to design

depending on which specific application one wishes to target.

Scoring strategy. We implemented a basic scoring approach which

evaluates how efficient a Q-zip operation can be, in order to select a

batch of them to apply on the mesh at a time. We account for a num-

ber of existing strategies to guide the singularity pair movements,

as we now detail for completeness:

• Electric push and pull. Given the nature of singularities, we con-

sider them as emitting an electric field such they a) attract com-

plementary singularities, and b) repulse similar singularities.

This simple strategy favors the merging of v3’s with v5’s, while

keeping v3’s (resp., v5’s) away from each other to offer better

mesh quality (bunched-up singularities would induce high dis-

tortion). Additionally, we consider boundaries and sharp features

as also weakly repulsing all singularities. An electric score is

then established by evaluating the distance of a singularity to the

three closest singularities and the closest boundary/feature, and

assigning a score based on the sum of the inverse of these signed

distances (measured in the number of edges). A Q-zip operation

that most decreases the electric potential will thus be favored.

• Isotropy control. Because we know the local collapses or splits

that a Q-zip operation performs, we can anticipate whether the

effect of the surgery will improve, or worsen, the isotropy of the

elements around the surgery path. Indeed, we can measure the

stretch of a current quad along 4 directions (two axis-aligned

directions, and two diagonal directions), and deduce whether

performing an LC, RC, LS, or LR will improve any of these factors:

this is what we call the isotropy score. This simple approach helps

to decide on which topological surgeries are most relevant based

on the current mesh geometry (see Fig. 18 for a resulting effect).

• Uniform sizing control. The exact same general idea applies to

the control of sizing via a sizing score: we seek a uniform sizing,

and thus penalize any collapsing surgery in a region already too

sparse, or splits in a region already too dense. This is also imple-

mented by simply summing the local sizing score of the surgery

paths to provide a general score for a given Q-Zip operation.

• Separatrix control. Finally, we also add a score which evaluates

whether a pairwise singularity move can help align singularities

with nearby separatrices: as noted in multiple previous works,

“near misses” created by short distances between a singularity

and a separatrix can create distortion issues easily remedied by

collapsing this short distance. Our separatrix score is simply the

inverse square of the distance to the closest separatrix, to favor

alignment and thus mesh quality.

Batch of best Q-zips. The combinatorial complexity involved in

considering all pairs of irregular vertices calls for heuristics in de-

termining which pairwise singularity movements can efficiently

decrease the total sum of our scores so as to reduce the number of

irregular vertices while promoting good quad shapes throughout

Fig. 16. Long and winding surgery paths. Feature alignments are pre-
served by avoiding paths crossing feature curves. As consequence, this mesh
of a mechanical part (left) undergoes long, winding surgery paths (middle,
early batch on top, later batch at bottom) before resulting in a more regular
structure (right). The mesh went from 154 v3 and 166 v5, to 26 v3 and 42 v5.

the mesh. In our implementation, we use a multiple-choice strategy,

similar in spirit to what was used for mesh decimation in [Wu and

Kobbelt 2002]. We first compute the current total mesh score, then

randomly pick a batch of 𝑠 singularities (where 𝑠 is set to 50% of the

number of singularities in our implementation) currently present on

the quad mesh. For each of these selected singularities, we explore

all the possible Q-zip operations between this singularity and one

of its three closest singularities of type v3 and type v5 respectively

(which makes for an exploration of 6 surgery paths for a total of

24 possible surgeries); the operation corresponding to the largest

decrease in mesh score is stored in a priority list of possible Q-zips.

From the best scores we found, we execute the top half of the list,

serially, while invalidating any surgery that comes in contact with

a region already operated on. (Note that an obvious extension could

be to perform these operations in parallel if the surgical paths are

kept safely away from each other.)

Smoothing. Local smoothing is also done after each batch of Q-

zips. Mesh smoothing has been extensively studied, and various

heuristics could be used. In our implementation, we use a simple

Laplacian smoothing performed in the polar geodesic parameter-

ization of the one-ring of each vertex. To favor uniform meshes

even around singularities, we use a valence-weighted Laplacian:

each edge is considered as a spring, whose stiffness depends on the

valence of its extremities — we use 1, 0.5, or 2 when the sum of

valence = 8, < 8, or > 8 respectively. A fixed number of iterations

is triggered after each Q-zip in the vicinity of the surgery scar.

Boundary defects. When a vertex is on a boundary, we declare it

as a topological defect based on its effective valence vs. its discrete

Fig. 17. Robustness test. A triangle mesh turned into a quad mesh through
Catmull-Clark scheme contains many singularities (left); Applying batches
of q-zip exhibits short surgical paths (middle left) at first given the initial
density of singularities, while later iterations contain far longer surgery
paths (middle right); the final output quad mesh contains the expected and
optimal 16 v5 singularities (right).
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geodesic curvature. Based on the closest multiple of 𝜋/2 that the
sum of tip angles makes at the vertex, we know the ideal valence:

for a subtended angle 𝜃 , the ideal valence is max(2,
⌈
𝜃
𝜋/2 + 1

2

⌉
). The

boundary defect is then set to be the effective valence minus this

ideal value; for instance, a value of −1 means that we consider this

boundary vertex to be akin to a valence-3 vertex when we pair

singularities together, in order to favor valences that lead to the

least amount of quad distortion on boundaries.

Feature protection. Sharp features, frequently present in meshes

of mechanical parts, must be preserved during editing. We can easily

accommodate this constraint by extending slightly the “realizable

operation” check explained in Sec. 2.5: we make sure during surgery

planning that none of the operations along the surgery path will

alter a sharp feature. Consequently, we can also prevent a surgery

path (by modifying the breadth-first search when computing a path

between two singularities) from cutting through a sharp feature as

it would systematically fail this check.

Protected regions. A useful extension of this protection of features

that we can exploit in our repeated applications of Q-zip is the notion

of protected regions: we let the user select entire regions of the mesh

where no mesh changes are allowed. We then simply disallow our

surgery paths to go through these regions. Similar to the notion

of binary masks in the seam carving algorithm for image resizing,

this will guarantee that no edge splits or quad collapses occur there,

thus protecting the flow lines inside these regions. Fig. 21 shows

an example, where the edge flows around the eyes, ears, nose, and

mouth are kept intact while the rest of the mesh is made more

regular. Note that the use of protected regions shows the practical

implications of the flexibility of Q-zip and of the proof of invariance

up to homotopy of the possible singularity edits: the presence of

multiple blocked regions can easily prevent the existence of surgery

paths without irregular vertices.

4.2 Evaluation of quad mesh improvements
In order to evaluate this simple mesh improvement approach, we

selected different types of inputs. We selected “Instant Meshes”

from [Jakob et al. 2015] as one of the few methods (with advancing-

front methods mentioned early on) which can create large-scale

meshes fast—with the drawback that many spurious singularities

may be present. We also chose meshes from [Fang et al. 2018] as

they are the result of a more involved optimization process, thus

rendering the presence of spurious singularities less likely. In both

cases, we found that our approach can easily improve their results

as a post-processing with a complexity roughly equal to their vertex

count, even without knowing which frame field they used to create

the meshes in the first place. For instance, meshes without sharp

features like Fig. 1 and Fig. 20 can be cleaned up with a straightfor-

ward application of Q-zip batches; the David mesh is rapidly cleaned

up after a few batches of Q-zip, but we stopped after 30 batches

to avoid simplifying the base structure too much. For meshes in-

volving sharp features like the mechanical part used in Fig. 19, our

surgery sketch avoids crossing sharp edges (by treating them as

boundaries) to prevent their destruction, restricting the possible set

of Q-zip operations and thus reducing the computational time for

connectivity exploration. Long surgeries are however frequent in

later stages of batch rounds, applying connectivity changes that

previous work on singularity pair editing could not handle (see

Fig. 16 with a mesh from [Jakob et al. 2015] and Fig. 12 for a mesh

from [Fang et al. 2018]): since the mesh has few singularities left, we

must have recourse to far-remote pairs of singularities to explore

further improvements. We also tried a “robustness test” by picking

a triangle mesh of a three-torus, simplifying it to make its triangles

Fig. 18. Topological surgery guided by mesh density. By anticipating
the effect of topological alterations (splits increasing the density of quads
while collapses decreasing it), Q-zip can select narrow passages (see yellow
mark) formed by sharp features; here, the split-based surgery automatically
chosen by our scoring function turns the narrow region at the bottom into
3-rows of quads while canceling some singularities during a batch of Q-zips,
making it more in line with the densities over other narrow regions.
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#v2 = 0

#v3 = 31

#v5 = 31

#v6+= 0

#v2 = 0

#v3 =14

#v5 =14

#v6+= 0

Nut mesh

from [Jakob et al. 2015]

Resulting quad mesh

after 2 batches of Q-zip

Fig. 19. Nut mesh. For meshes with sharp features and a few singularities
(left, with 11,598 quads), two applications of Q-zip batches are enough to
clean up the mesh without major alteration (right, now with 11,563 quads).

quite stretched, then subdivided it into quads to generate a very

bad initial quad mesh, see Fig 17. After 12 batches of Q-zip (and

longer and longer surgeries), the result is a quad mesh with the

lowest expected amount of v3 and v5 vertices. The same robust-

ness test was performed on the fertility model in Fig. 1. Finally, we

note that the simple uniform sizing and isotropy control scores we

use in our approach can find surprisingly good surgery paths: in

Fig. 18, we show one of the later batches of Q-zip, and one of the

long operations go right through a two-quad wide region and turn

it into a three-wide region, improving the isotropy and uniformity

as desired. Such surgeries would be singularly difficult for a human

to design, proving the usefulness of Q-zip and of our simple scoring

strategy. We note that our mesh improvement tool, for which more

results can be found in Fig. 22, does not use any frame field or sizing
field, as we wanted to illustrate the efficacy of Q-zip as an editing

tool rather than producing meshes which optimize a precise quality

measure. Different scoring strategies than the ones described in this

section are easily formulated and can be equally applied, depending

on the application being sought after.

4.3 Timings
Q-zip is easy to implement, and requires so few computations in

practice that even long paths are no impediment to the exploration

of connectivity changes in terms of computational time. The local

BFS searches and trivial edge-to-edge topological operations based

on the compass actions can be easily executed on even very large

meshes. In fact, in all our examples, the scoring takes over 99% of the

overall computational time, the actual surgery sketching, planning,

preparation, and execution being therefore negligible. As a means

to better illustrate the simplicity of Q-zip, we did some statistics

on the rounds of Q-zip batches done on the David mesh of Fig. 20:

we found that the average surgery path length was seven edges,

and the average timing for a full Q-zip surgery (discounting score

evaluation) was 0.5ms on a laptop with a Xeon CPU E5-1620 3.6GHz.

5 CONCLUSION
We introduced in this paper a simple singularity editing primitive

and its principled implementation, with which pairs of arbitrarily-

distant singularities can be efficiently moved around a mesh by

applying a chain of local operations with a minimal footprint. Our

approach significantly generalizes the existing state-of-the-art ap-

proaches to connectivity editing of quad meshes targeting a bet-

ter placement of, or a reduction in, singularities [Peng et al. 2011;

Bommes et al. 2011; Verma and Suresh 2017; Docampo-Sanchez and

Haimes 2019]. The resulting algorithm is offering a general, prac-

tical, automated, scalable and reversible approach to performing

singularity editing, for which we discussed possible applications

when dealing with quad mesh processing. Theoretical contributions

extending the work of [Peng et al. 2011] were formulated, proving

that our Q-zip automated procedure results in isomorphic meshes

for all homological surgical planning paths between a given singu-

larity pair. Parallel-transport of a compass of topological actions

was also introduced to guarantee grid-preserving editing without

an automaton [Bommes et al. 2011].

Given the generality and simplicity of Q-zip, we believe it can

apply to a slew of geometry processing methods applied to quad

or triangle-quad meshes. While the efficiency of Q-zip makes it

#v2 = 0

#v3= 550

#v5= 490

#v6+ = 26

#v2 = 0

#v3= 59

#v5= 51

#v6+ = 0

David mesh

from [Fang et al. 2018]

Resulting quad mesh

after 20 batches of Q-zip

Fig. 20. David mesh. For inputs with a large amount of singularities, we
can produce several batches of Q-zip operations to make the mesh more
regular with only a small decrease in mesh elements (here, around 10%).
However, in one batch process having no input frame field, parts of the
mesh may become overly simplified, see around the eyes for instance where
the initial placement of singularities is lost. User input, or a more involved
scoring strategy, can easily protect regions of the input mesh if needed.

#v2 = 0

#v3= 550

#v5= 490

#v6+ = 26

#v2 = 0

#v3= 76

#v5= 70

#v6+ = 0

David + protected areas

from [Fang et al. 2018]

Resulting quad mesh

after 15 batches of Q-zip

Fig. 21. User-input Protection. Contrary to Fig. 20, the user can first select
regions on the mesh to protect, see tawny regions (left); batches of Q-zip will
then automatically preserve the local edge flow of these protected regions
by simply forbidding surgery paths from entering them.
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Fig. 22. Zoo. Examples of quad meshes from [Fang et al. 2018], of various sizes, on which a few automatic Q-zip batches were performed based on the
heuristic for connectivity optimization described in Sec. 4.1. Irregular vertices are marked as colored balls, and yellow lines indicate sharp features.

particularly attractive for mesh optimization where the effect of a

singularity pair motion needs to be evaluated, performed, or undone

efficiently (using, for instance, the heuristic approach presented in

Sec. 4.1), this editing tool may also allow for a simple and intuitive

framework for user-driven mesh optimization, helping artists design

low-count quad meshes more efficiently. Finally, we note that Q-zip

is technically generalizable to hexahedra. Whether it can become

as useful for the beautifying of hexahedral meshes remains to be

tested, and is left as future work.
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