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Abstract

Color transfer functions (i.e. colormaps) exhibiting a high
frequency luminosity component have proven to be useful in the
visualization of data where feature detection or iso-contours
recognition is essential. Having these colormaps also display a
wide range of color and an aesthetically pleasing composition
holds the potential to further aid image understanding and
analysis. However producing such colormaps in an efficient
manner with current colormap creation tools is difficult. We
hereby demonstrate an interactive technique for extracting
colormaps from artwork and pictures. We show how the rich and
careful color design and dynamic luminance range of an existing
image can be gracefully captured in a colormap and be utilized
effectively in the exploration of complex datasets.

1 Introduction

Scientific research yields a wide spectrum of large datasets that
researchers strive to understand and analyze. Examples of these
datasets include results from simulations and scans of fluid flows
and shock propagation, magnetic fields, and heat and pressure
convection, among many others. Visualization has become the
key in understanding these physical phenomena, by visual mining
for specific features such as vortices.  Visualization plays a
similar role for data resulting from high resolution MRI scans or
CT scans, used as diagnostic tools in the field of medicine as well
as for quantitative studies in paleontology and fossil discovery,
where the results are closely studied by researchers looking for
specific visual patterns denoting embedded physical structures.

These datasets are commonly studied and explored through the
use of slices, volume renderings, isosurfaces, vector displays, and
particle traces.  In all of these cases, especially with the former
two, this is done by mapping the data values to a grayscale
intensity or simple hue-spectrum color transfer function.
Detecting subtle variances in the data from this straightforward
approach is usually quite challenging visually. Furthermore,
significant features may be contained within these subtle
variances.

The use of an adequate correct color transfer function then
becomes key to accelerating the detection of these details, and
making them perceivable to the typical discerning end user. This
is particularly true in the case of shockwave propagation
animations. Here, researchers not only need to distinguish among
moving isocontours representing the shockwave fronts, but also
need to distinguish one from the next. Being able to follow the
movement of these shock fronts is especially interesting when
shockwave refraction occurs.

1.1 Previous Research

From studies in color perception we know that humans
perceive changes in luminance much clearer than changes in hue
[Rogo]. Variance in luminance is naturally a more appropriate
mechanism for color-coding high frequency information,
suggesting that a colormap that offers a high frequency of
changes in luminosity is also more likely to yield more
information in a visualization. Work such as [Ki02] further
supports these premises, and even offers easy ways for a user to
calibrate luminance using face-based tools.

In addition to using luminosity variance, we can also use hue
and saturation variations to increase the amount of information
displayed. Even though research on selectively matching color
transfer functions to different types of visualizations has been
done, little has been published in this area.  This is primarily due
to the case by case nature of colormap selection in visualization as
well as the difficulty of quantifying an attribute such as colormap
efficacy. Nevertheless, as human vision has been found to be
extremely adept at recognizing features in images [Will],  it is fair
to explore how we can optimize this inherent capability by
offering rich images that will further aid in the analysis of data.

1.1.1   Scientific Visualization

     Much of current research supports correct color choices
rather than specific colormaps. Examples of such studies applied
to visualization of different areas of science can be seen in

Figure 1: Colormap extracted from Klee’s “Park of
Idols” (1939)  versus a standard Grayscale colormap
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Figure 2: Claude Monet “Le bassin aux Nymphéas”,
1923. a) Original painting and b) Luminosity[Dura]

[Rogo], [Spar], or [Dere]. There have also been attempts to
mathematically aid in the color selection, such that the resulting
colors prove distinguishable to human perception [Heal].
However, the user is still thrust with the burden of knowing what
color scheme to use and what frequency to place the desired
colors in. Thus the time it takes to create a meaningful colormap
which proves useful is significantly increased by adding these
proven perception constraints.

One solution proposed has been to offer the user a set of
predetermined colormaps or carefully steer the user in the creation
of one [Berg]. However, prepackaged colormaps and pre-
established creation procedures still bring static constraints and
limitations. In the worst case scenario, the scientist has to alter the
catalogued colormap to the point where the effort spent is
comparable to the effort it would take to create a colormap from
scratch. Other solutions, suggest semi-automatically generating
colormaps though analysis of the data's intrinsic characteristics
[Kind]. This, while highly applicable to volume rendering, does
not address important issues in color choices, distribution, and
perception effects. In fact, several different approaches to
generating colormaps were studied and compared as part of a
panel [Pfei]. The conclusions from this comparison were highly
dependent on the dataset in question, and in most cases best
benefited from the knowledge and intuition of the user.

    In the end, visualization is the key to reaching a desired
audience and conveying the value of research being done. The
scientific community understands the value of the aesthetic
quality of their results, particularly in differentiating similar
research being done at different locations.  From this perspective,
prepackaged colormaps might fail in offering the user the
flexibility to create unique results, and the only other option of
creating aesthetically coherent colormaps from scratch requires
know-how and time unavailable to most researchers.

1.1.2  Turning to the Masters

Looking for a more rigorous, rich, and extensive choice for
color schemes we turn to art. [Laid], [Gooc] (see also [Rhyn]),
turned their attention towards art to find innovative techniques for
visualization. These focus on the knowledge, skills, and specific
methods used by artists throughout their art. Similarly, [Inte]
introduces the idea of using natural textures extracted from
images and applied to scientific visualization in order to allow the
user to better relate and understand the data being shown. We, on
the other hand, will be taking a closer look at the specific color
and composition choices used by artists, and looking to benefit
from their choices more directly.

[Corr] characterizes art as "an example [of an image] where the
message is contained more in the high-level color qualities and
spatial arrangements than in the physical properties of the color."
This is especially true in artists such as Claude Monet, where the
visual information is hidden in the pure luminance channel,
buried underneath the whimsical but precise color use of the
artist, as can be seen in Figure 2.

In art we are able to find deliberate color choices and
arrangements, conveying information that in most cases
transcends the color itself (unless the intentional choice is made
otherwise). Thus, our proposal is to use as inspiration these
carefully designed color schemes developed and deployed
methodically by artists, and use them as our source for our color

transfer function generation. Furthermore, these color schemes, as
mastered by artists, are endowed intrinsically with the same
precepts that have been partially recreated through computational
methods, such as in [Heal]. Millennia of the development and
refinement of human art assures us that the art which we
recognize to be masterful in fact contains a vast "knowledge-
base" of color manipulation knowledge and understanding of
human color perception.

Whether we are looking at a piece of art or a cover of a
magazine, our attention is drawn out by focus point as created by
the image composition and color schemes. In fact, perception
studies tell us that our brain pieces images together through a
series of visual glances at different visual focus points. Color
distribution in a picture clearly affects the desired focal points for
the image. Work done by [Neig] attempts to automatically find
such points of focal interest, and attempt to estimate the paths of
vision through focus points by a viewer.

Indeed, artists have been aware of these attention focus paths
for quite a long time, and use them to guide an audience through
their expression and meaning in their work. A great example of
this is the body of work of Paul Klee. Starting with his
"Contributions to a Theory of Pictorial Form", Klee attempts to
find a relationship between music and painting as a "Rhythmic
Exercise" [Ferr]. Thus, highly aware of his composition, art
erudites believe Klee planned for deliberate paths of visual focus
on his work. This in many ways is the art of composition,
essential to all art work. However, in Klee's art pieces, given his
writings and body of work, it is easier to infer the specific
perception (psychometric) motions he intended for his audience.

Composition along with mastery of the color palette used, as
well as careful planning of the different color distributions are
clearly beyond the skills and capabilities of the average scientist
and visualization designer. Art analysts in fact know that color
schemes can be so complex, that just reproducing a color palette
as used by a master is an impossible undertaking. In fact it is a
primary obstacle in reproducing a masterpiece.

Our efforts center around the ability to used scanned work of
art to extract the carefully conceived color schemes, therefore
giving the visualization designer a superb "knowledge-base"
system encoded in the art work from which to elaborate a unique
color transfer function.
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1.2 Contribution

Our proposition and contribution lies in first accepting that
there exist masters in color scheme creation and manipulation.
These masters can be found as artists who carefully conceive and
implement color manipulation throughout their body of work;
whether in a painting, or a photograph. Second, we propose to
exploit this erudition by extracting this encoded, carefully
selected information, and applying it to scientific visualization.
As a result, the end user is able to extract interactively a color
transfer function from existing art work that is aesthetically
pleasing, highly coordinated, appropriate to the specific task,
while displaying a high frequency in intensity and a desired wide
spectrum of color as needed.

Our goal is to empower users who want complete creative
control over the colormap creation, by offering them a tool which
makes the process of achieving a complex, color-rich, and
aesthetically coherent colormap quick and easy. Our solution is to
allow the user to manually extract colormaps from any desired
image.

We will show here the results of the implementation of this
tool with a set of art-based images. We characterize art images as
photographs or paintings, taken from nature or created by an
artist, with intentional choices made for the color distribution and
composition. We further suggest, following the work on semi-
automatically finding visual focus points [Miau], that the
extraction of these colormaps can be automated using visual focus
points to extract colormaps from a given art image in a wide
range of color variation and luminance frequencies, all with an
underlying aesthetically coherent color scheme.

The results will be aesthetically coherent colormaps, where the
luminosity demonstrates a high frequency akin to the luminosity
visual cues presented in the art pieces (Figure A.1).

We introduce the use of a software tool that extracts colormaps
or color transfer functions from images as an alternative to
arduous manual creation of color-rich high-frequency colormaps.
We use this tool upon images of  human produced art so as to
benefit from a very deliberate and proven effective color scheme.
We then apply the resulting colormaps to scientific data, creating
highly detailed and lush visualizations, such as can be seen in
Figure 1. The complexity and richness of the resulting transfer
functions becomes evident when compared to its grayscale
counterpart, especially given that the generation and application
of the new colormap took but seconds.

2 Color Schemes and Transfer Functions

Figure 3a was extracted from a sequence of MRI scans of a
fossil rock collected from the Lincoln Creek formation at
exposures in southwestern Washington state. Shown are three
orthogonal slices through the data set. The volume reveals what is
currently perceived to be a gastropod from the Early Miocene in
age (approximately 21-23 Million years old), known as
Ancistrolepis Jimgoederti (courtesy of James Hagadorn). Using a
linear conversion from the scanned value to grayscale, we are
scarcely able to perceive the elliptical features in the bottom
cutting plane. These represent the body of the coiled gastropod.
This linear mapping corresponds to the colormap seen in Figure
3b. From previous research we know that adding more intensity
fluctuation can increase the amount of detail than can be

perceived. We do that by increasing the number of grayscale
cycles in our colormap to create Figure 3c. Now we can easily
observe the intersection of the gastropod with the cutting plane
becomes clearer, as three darker ellipses.

So how many more features can we infer from this image? Is it
possible to tell the value at which these features occur? These are
obviously very hard propositions to carry out from the images
resulting from our initial choices in color transfer functions.

To put it into perspective, it took us approximately seven
minutes to perfect the colormap seen in Figure 3d. Much of the
time was devoted to making sure the frequency and amplitude of
the grayscale cycles appear uniform. The tool used to create the
colormap was the Generate Colormap Module under NAG's Iris
Explorer [IRIS], a curve-based colormap generation tool. In
contrast, a freehand colormap creation tool would have eased the
process of creating the cycles. Furthermore, systems such as
Adobe Photoshop [Phot] offer manual sketching curve techniques
with smoothing options that make this kind of proposition
simpler. Nevertheless, once you add separate controls for hue,
saturation, and opacity, or red, green, blue, and opacity, the task at
hand becomes increasingly difficult.

 Basic grayscale intensity ramp colormaps, and simple hue
spectrum colormaps, can illustrate a simple data distribution.
However, we can improve on these by creating color transfer
functions with a higher frequency in intensity when needed. In
grayscale, the lack of color variance makes one specific cycle
value indistinguishable from the next. As an improvement, the
user can vary hue values throughout the colormap. But choosing
hue values that are distinct, aesthetically pleasing and coordinated
at this point in the process is quite clearly time-consuming, and
for the less experienced, quite grueling.

Pre-established colormaps, such as those of [Berg] can greatly
accelerate this process. But as the user creates the colormap, they
must attempt to reflect a thematic that is congruent with the
intention of the visualization in order to avoid conveying wrong
information. So, if no pre-established suitable colormap is found
which satisfies the user's needs, both of thematic and color
variation frequency, the user has to revert to creating the
colormap from scratch.

Figure 3: a,c) Orthogonal Cutting Planes through Volume
from MRI Scans of gastropod form Early Miocene; b,d)

Corresponding Colormaps

a) b)

c) d)
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Figure 5: Sample 2: Classic art,
color variance demonstrating color clusters.

3 Color Sampling

Our tool was implemented as a standalone Java application. It
takes in an image as input, displays it, and then allows the user to
interactively select a path on top of the image from which the
colormap will be extracted, as shown in Figure 4. The  output is
the 256 or 1024 record lookup color table. These values are
inferred from evenly spaced sampling points across the length of
the path. Notice that this could also be done or suggested
automatically using the visual focal points extraction tools
discussed earlier, as in the online applet found at [BUVA].

Once a sample line is drawn, sample intervals are computed
along the path. The color itself can be sampled in one of three
modes. First is the nearest pixel mode, where the pixel closest to
the sample interval end is chosen. Second, linear average mode,
where colors are assigned a linear weight between neighboring
interval ends, and the resulting color is computed as an average.
Third, is also a weighted average, where a Gaussian curve is used
to assign weights. Figure A.2 illustrates the different results from
the different modes.

 The first mode, nearest pixel, produces colors that are most
faithful to the original image, though it is likely that the graphics
engine used when applying the colormap will interpolate between
samples to create new colors. Similarly, it also runs the risk to
skip some colors of interest that lie between interval ends.
Conversely, the sample pixel may be a very atypical color which
the user may not be expecting. The second and third methods
blend colors, so the resulting color scheme may seem smoother,
though it also may seem less drastic.

Thus the resulting colormap from the tool is dependent on its
drawn location, the sampling rate (which can be interactively
changed), and the color sampling mode. However, since it is up to
the visualization engine to do the interpolation for colors between
the table entries for the colormap, a few new colors may be
introduced.

4 Results

    We can characterize the resulting images according to their
variation in color content and amount of distinctly present
features. Images high in color content will yield colormaps with a
high degree of color diversity. Meanwhile, images with large
number of clearly demarked features will yield colormaps with

high levels of luminance change, as long as the path directly
crosses the image feature's boundaries. If the selected path runs a
perimeter of one of these image's features, or if the path length is
small enough, then the resulting colormap will have low color
change deviation. However, it is clear that the user is empowered
with all the necessary tools to manipulate the color path in order
to achieve any desired result. Notice that if the user decided to
create paths spanning a few pixels, then the tool would return a
colormap with minimal color/luminosity variation.

To illustrate some of the different situations encountered, we
have chosen a wide range of images to produce colormaps for the
gastropod MRI volume shown before.

On the first example, we explore an image mostly devoid of
sharp features (Figure 4) as based on a work by Mark Rotko. Two
clear regions, apparently low in color and luminance variation,
exist. By weaving the path across the color boundary we
effectively introduced high color variations into our resulting
colormap. Because the main body of the gastropod lies in the
higher range values, the ellipses do not appear as clear as possibly
wanted. However, the color variation, though slight, is clear
enough to mark their location.

The example on Figure 5 illustrates a path set across Leonardo
da Vinci's Mona Lisa. The path crosses major visual features,
picking up colors from several different color palettes. The
resulting image is consistent in color with the source, yet is quite
unequivocal in bounding the features. While the whole color
transfer function demonstrates continuous variations in
luminance, now value regions can be determined. This is expected
to be done by the user interactively, with a certain purpose in
mind.

Figure 6 samples a piece by El Greco named "The Burial of the
Count of Orgaz". The extreme high density of color variation in
the different parts of the image means that the path does not need
to be long or complicated to gather a colormap high in luminance
and color fluctuations. Notice how two different paths, both
created extremely quickly, can create radically different results.

Finally, we use an abstract piece by Paul Klee. As Figure 7
depicts, the path cuts diagonally across "The Embrace". Though
the color saturation outside the rough thicker black strokes seems
bleak, the colormap surprisingly picks up the subtle color
variations. Yet again, the natural use of color and dark strokes is
clearly conveyed in the resulting visualization. Notice the choice

Figure 4: Colormapper tool and Sample 1: Image with
simple features, “White Center” by Mark Rothko
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of where the path starts and ends is quite deliberate. Our instinct,
which is clearly what the artist intended, was to first focus on the
two eye-like features in the mid-top section. By choosing to go
from one attention focus point to another, we are sure to
encounter large color variations, as color variations and
arrangements are one of the criteria that attract our perception and
originates focus points. Through the use of this colormap, our
resulting image does not only display the equivalent variation in
color and luminance, but has created interesting focus points of
our own.

For each of all the presented examples the color map creation
took less than a minute. No alterations were needed.

5 Future Work

Work on the tool itself includes the added ability to alter the
sampling rate density by interactively pulling or pushing tick
marks across the path. We have also tested the use of cubic curves
instead of straight lines. As expected, the results were not
particularly different from those achieved using straight line
segments. It actually diminished the ease of the current interface.
Color transfer functions obtained from this tool may also be
applied to the generation of textures. It is possible to detect the
major changes in luminosity from the acquired colormaps, and
map these cycles to functionally generated repeating texture
patterns (ex. [Soler],[Tong]) to create unique model texturing.
The ability to work from a specific image will allow modelers to
reproduce natural occurring color schemes on created models
without creating an obviously repetitive pattern.

Another interesting area of development will be to allow the
tool to suggest paths as resulting from visual paths among
attention focus points [Miau][BUVA]. As the system creates a

series of complex colormaps in this semi-automatic mode, it
would be then possible to create spreadsheets/tables of different
applications of unique colormaps for fast data study [Jank].

For different examples using natural photography [Afga] as
well as different datasets see additional figures in Appendix B.

6 Conclusions

All results demonstrated throughout this paper took under a
minute for the sole creation of the colormap. Given the results, we
believe that the tool is extremely valuable. It is our belief that
such a tool will be useful under most visualization endeavors. It
also seems clear from looking at the results that some intrinsic
artistic/emotional values of the original images are carried over
onto the applications. Further work, evaluating color patterns and
color density values between the original image and results from
diverse paths, may prove interesting and valuable in trying to
mimic an artist's ability to portray specific scenes.

In addition, for sciences where actual images captured from
experiments or actual structure exist, this type of colormap
extraction may serve as a quick low overhead (versus texture
maps) method to create valuable color-coding of the data
segments. This may include medical data (ex. picture of a tumor
amidst healthy tissue), paleontology data (ex. illustration of a
fossil's estimated epidermis), or fluid dynamics simulations (ex.
pictures from field experiments with gases, combustion, jets).

 It is not possible to generalize and comprehensively measure
the effectiveness of colormaps across all implementations of
scientific visualization, for the obvious reason that individual
visualizations carry different goals and needs. However, it is in
fact this case-by-case nature of visualization that has created the
need for flexibility in colormap creation. We therefore perceive
our approach has not only met this need to create successful
custom color transfer functions, but also offers the ability to
create them quickly and with ease.
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Appendix A - Illustrations

Appendix B - Further Examples

Figure A.1:  a) Colormap extracted from Klee’s “Park
of Idols”b) luminocity component c) color component.

Figure A.2: a) closest pixel color sampling, b) linear
sampling, c) Gaussian curve based sampling

Figure B.1-2: Further Photographic Examples. [Afga]-
Notice the first image has little hue variance, yet its high

luminosity frequency creates a very effective colormap.

Figure B.3: “La
Vie” by Pablo Ruiz
Picasso, 1904::
Pressure front
propagation in a
thin-shell simulation
of an airbag- early
frames. Courtesy of
Fehmi Cirak,
Caltech.

Figure B.4: “Composition V” by Modrian, 1975::
AMR Mesh Level debugging Visualization.

Courtesy of the ASCI/ASAP Center at Caltech.

Figure B.5: “Still Life
with Parrot” by Frida

Kahlo, 1951:: Scans of
slices of a monkey’s

brain. Courtesy of John
Allman Lab, Caltech.


