
Progressive Encoding of Complex Isosurfaces
Haeyoung Lee

USC
Mathieu Desbrun

USC
Peter Schröder

Caltech

Octree level
Bytes passed
Distortion(10)

5
507
166.18

7
8605
22.02

8
24957
6.77

8+33%
92156
4.06

8+100%
226554
0.65-4

Figure 1: Progressively decoded isosurface (Headscan model) at 2573 grid resolution (octree depth of eight). Up to the last octree level, no
explicit geometry is encoded. Explicit geometry bits are only associated with the final resolution level. Distortions are relative L2 errors
measured by Metro [Cignoni et al. 1998], normalized to the bounding box diagonal length and given in multiples of 10−4.

Abstract
We present a progressive encoding technique specifically designed
for complex isosurfaces. It achieves better rate distortion perfor-
mance than all standard mesh coders, and even improves on all
previous single rate isosurface coders. Our novel algorithm han-
dles isosurfaces with or without sharp features, and deals gracefully
with high topologic and geometric complexity. The inside/outside
function of the volume data is progressively transmitted through
the use of an adaptive octree, while a local frame based encoding
is used for the fine level placement of surface samples. Local pat-
terns in topology and local smoothness in geometry are exploited
by context-based arithmetic encoding, allowing us to achieve an
average of 6.10 bits per vertex (b/v) at very low distortion. Of this
rate only 0.65 b/v are dedicated to connectivity data: this improves
by 24% over the best previous single rate isosurface encoder.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques–Interaction techniques;

Keywords: Compression, Isosurfaces, Progressive Transmission.

1 Introduction
Many of the very large, highly detailed meshes produced so far are
isosurfaces [Bloomenthal 1997] extracted from volume data. 3D
photography, volumetric imaging, and scientific simulation are fre-
quent sources of such data. In particular, medical scans (CT, MRI)
are important examples of the complex surfaces which need to be
visualized, stored, or transmitted. The complexity of such models is
manifested by the presence of fine geometric details throughout the
volume as well as the high genus and number of connected com-
ponents (see Figures 1 and 2 showing a model with genus 425; see
also Table 1).

The sheer size of these meshes was a main motivation for
research efforts in mesh simplification [Hoppe 1996; Lindstrom
2000], mesh compression [Deering 1995; Rossignac 1999; Taubin
and Rossignac 1998; Touma and Gotsman 1998; Lee et al. 2002],
and progressive transmission [Taubin et al. 1998; Bajaj et al. 1999;
Pajarola and Rossignac 2000; Alliez and Desbrun 2001; Gandoin
and Devillers 2002]. Mesh compression methods have steadily de-
creased their bit rates, but so far very few take advantage of the spe-
cial structure of isosurfaces to improve their rate distortion (r/d) per-
formance. Some of the most efficient progressive geometry com-
pression techniques to date [Khodakovsky et al. 2000; Gu et al.
2002] are based on remeshing; unfortunately they are impractical
for complex isosurfaces with high topologic complexity.

Previous Work To achieve better r/d performance for isosur-
faces extracted from regularly sampled volume data one can exploit
the special structure of such meshes. Given the voxel grid, a surface
sample can be localized by specifying a voxel and a displacement
with respect to the origin of that voxel. For example, the Marching
Cubes (MC) algorithm [Lorensen and Cline 1987] specifies surface
samples along voxel edges which “pierce” the isosurface, i.e., one
of the endpoints is on the strict outside while the other is on or in-
side the isosurface. Knowing these edges and the relative location
along each edge completely specify the mesh extracted1. Contrast
this with arbitrary meshes in which vertex coordinates are entirely
unconstrained.

The observation that each vertex produced by MC can be spec-
ified by an edge and a displacement has been exploited to lower
the rate by a number of authors [Saupe and Kuska 2001; Zhang
et al. 2001; Yang and Wu 2002; Saupe and Kuska 2002; Taubin
2002]. These papers differ in the methods by which they local-
ize the piercing edges and the use of context for entropy coding.
Overall, this approach results in significantly lower rates: on the
horse model (Figure 5) we extracted from scan-converted volumet-
ric data, Taubin’s BLIC [2002] achieves 2.4 b/v with a distortion
similar to a standard mesh coder [Lee et al. 2002] at 17 b/v.

All these previous techniques are, alas, single-rate: they do not
support progressive decoding. However, the size and complexity of
isosurfaces in many applications is such that an embedded coder is
all but required. This motivated Laney et al. [2002] to use wavelet
encodings in the special case of distance functions, while Samet
and Kochut [2002] conducted experiments to evaluate the entropy

1Some topologic ambiguities have to be resolved (see [Lachaud 1996]).

1

Figure 2: An isosurface extracted from a medical dataset often ex-
hibits high topologic complexity with many small handles and con-
nected components. In this head scan example, there are 183 com-
ponents and a total genus of 425.

of adaptive octrees which approximate an isosurface. Unfortunately
in both cases the results are much worse than those achieved by
single rate isosurface coders.
Contributions In this paper, we present a novel algorithm for
progressive encoding of isosurfaces extracted from volumetric data
sampled on a regular grid. The algorithm deals naturally with high
geometric and topologic complexity and produces successive re-
finements of the 3D model in a coarse-to-fine fashion. We exploit
correlation in space and scale using an adaptive octree structure and
context based entropy coding. Despite its progressive nature, the r/d
performance of our algorithm surpasses all standard mesh compres-
sion algorithms as well as the isosurface-specific single-rate coders
as we demonstrate on a variety of test cases.

2 Setup and Design Choices
Before going into a detailed description of our algorithm, we begin
with a discussion of desirable features to motivate our subsequent
design choices. We also use this section to fix notation.

Desiderata The features we desire in our coder are straightfor-
ward. We wish to:
• accept regularly sampled scalar (e.g., from MRI and CT,

level set simulation, and 3D photography sources), or Her-
mite volume data as it allows for the description of sharp fea-
tures [Kobbelt et al. 2001].

• produce significantly better r/d performance than general pur-
pose mesh coders;

• exploit the special structure of isosurface meshes;
• produce an embedded bitstream suitable for progressive recon-

struction of successively refined geometry and topology while
producing crack free reconstructions at all times.

Design Choices Given these requirements, we chose
1. an adaptive octree based approach for the localization of

piercing edges. It takes advantage of the special nature of iso-
surface meshes providing progressive localization a bit plane
at a time. It also provides contexts for entropy coding which
can exploit correlation both spatially and across scale. To sup-
port adaptive reconstruction we need the inside/outside status
for all vertices of the grid, the transmission of which must be
performed with care to avoid obvious redundancies.

2. the Dual Contouring method [Ju et al. 2002; Schaefer and
Warren 2002] for isosurface extraction. Its dual nature pro-
duces watertight meshes for any adaptive description of the
original grid. It can also handle Hermite data, which enables
the encoding of surfaces with sharp features (see Figure 5).

Definitions The volume data is given as a regular 3D grid of
samples of a scalar function (possibly with hermite data) at some
resolution N : {dijk} for i, j, k ∈ [0, N − 1]. The spatial loca-
tion of dijk is denoted xijk. We assume N = 2j + 1 for some
j > 0, as any other grid size can be extended and padded with

outside values at small entropy cost. The sign bit at xijk is the
predicate dijk ≤ c, i.e., zero iff xijk is on the strict exterior of
the isosurface. The type of a cell is homogeneous if its 8 corners
carry the same sign bit and inhomogeneous otherwise (following
the convention of [Ju et al. 2002]). Edges are homogeneous if the
sign bits on either end agree, and inhomogeneous otherwise. The
latter corresponds to piercing edges mentioned earlier. An inhomo-
geneous cell always has at least one inhomogenous edge. During
octree traversal we enumerate children cells in lexicographic order,
which in turn dictates the order of sign bit transmission. Finally,
the distortion of a given reconstruction is evaluated as the L2 norm
of the distance from the reconstruction to the original surface using
Metro [Cignoni et al. 1998]. The measure is symmetrized by ex-
changing the roles of original and reconstruction and the result is
normalized by the bounding box diagonal.

Models #V #F #E #CC genus
MRI-hd. 1415850 1450574 2867855 5793 6508
Engine 304384 301005 605193 265 167
Hd.scan 280039 281154 561677 183 425
Sphere 213544 213542 427084 1 0
Feline 192848 196698 389544 12 11
Dragon 191154 191318 382418 21 -6
Bonsai 165467 166396 330677 510 -83
Buddha 80755 81004 161755 23 21
Horse 69311 69318 138629 1 1
Eight 67214 67218 134434 1 2
Tricera. 33696 33708 67403 1 1
Temple 219950 219958 439916 1 5

Table 1: Statistics for sample datasets: number of vertices, faces,
edges, connected components, and genus. Each model is extracted
from a 2573 grid, except for Feline and Dragon that come from
a 5133 grid. Sphere, Horse, Eight, and Triceratops are scan-
converted from meshes to volume data to compare with previous
mesh compression methods. The temple model is distinguished by
its synthetic origin and sharp edges.

3 Isosurface Encoding Algorithm
The encoder is structured into three main phases. In the first phase
a pass over the original volume data produces an adaptive octree
representation of the sign bitmap (i.e., the inside/outside function),
as well as the surface samples of the Dual Contouring extraction. In
a second phase this sign bit octree, as well as the type of each cell,
are turned into a bitstream during a coarse to fine traversal. Hier-
archical prediction and context coding exploit correlations in space
and scale. This completes what we will refer to as the connectiv-
ity encoding stage of the algorithm, since it defines the topology
and connectivity of the Dual Contouring mesh. Notice that, be-
cause of the peculiar nature of isosurfaces, the bitstream produced
at this point contains connectivity and geometry information since
the surface samples have effectively been localized to within their
final voxels. The third phase performs final geometry encoding
by progressively sub-localizing the vertices of the Dual Contour-
ing mesh. To further reduce bit rate we decompose the geometry
residuals into tangential and normal components.

Since the decoder performs the exact symmetric set of operations
we will give algorithms for the encoder only.

3.1 Adaptive Octree Construction
The input of the algorithm is the set {dijk} possibly with associated
Hermite data. In either case we need to locate the inhomogeneous
edges to specify the isosurface. These edges can be derived from
a knowledge of the sign bitmap. For example, Taubin [2002] used
a sequential traversal of each volume slice of the sign bitmap to
enumerate these edges. Since we want a progressive bitstream we
perform the transmission coarse to fine. For this we need a sign bit

Figure 3: Visualization of the adaptive octree (and associated re-
construction) for the Horse model for levels three through six.

octree which is constructed in a fine to coarse fashion. Whenever
all eight children are homogeneous they are deleted. This leads to
coarse cells in homogeneous regions and refinement of the tree near
the isosurface (see Figure 3). The inhomogeneous leaves of this
tree contain vertices of the Dual Contouring mesh. The structure
of this tree fully specifies the connectivity of the isosurface while
the vertices stored with the leaves recover the geometry of the Dual
Contouring mesh.

If Hermite data is available we use the Dual Contouring algo-
rithm to find the optimal position within the leaf cell. In the case of
sharp edges, this will ensure that the vertices are snapped to these
features. For scalar volume data we compute the isosurface inter-
section points along each inhomogeneous edge of a leaf cell and
use their barycenter as the leaf vertex. Note that hybrid techniques
to position the leaf vertices can also be used. For example, normals
can be estimated by finite differences if the data is clean enough.

At this point we have extracted all topology and geometry in-
formation from the original volume data and will need it no further.
Notice that normals are only used initially to find the optimal vertex
positions, so we do not transmit the normals in our technique.

3.2 Connectivity Encoding
Principle The octree must now be transmitted in a coarse to fine
fashion to support progressivity. Together with the sign bits of the
corners of a given cell we must also indicate whether the cell is
a leaf node. The leaf/non-leaf status of a partially reconstructed
octree at the receiver will guide interpretation of subsequent bits:
leaves will not be explored further. At the finest level of the octree,
any cell is a leaf node by definition. At all but the finest level, the
algorithm uses the sign bits at cell corners to predict the leaf/non-
leaf status: an inhomogeneous cell is not a leaf; a homogeneous cell
may not be a leaf. For example, if a small connected component at
a fine level of the hierarchy is eventually contained in a coarse cell
with uniform sign bits at its corners, it is homogeneous yet not a
leaf cell. Consequently we send a leaf bit for each homogeneous
cell, indicating whether it is a leaf or not.

To ensure synchronized decoding, we start by sending the grid
size N from which the decoder deduces the number of levels
(dlog2 Ne), followed by the eight sign bits of the root cell of the
octree. The algorithm then performs a breadth first traversal of

the adaptive octree in lexicographic order. For each cell it emits
the sign bits of the eight children unless they have already been
transmitted—both encoder and decoder can do so in lock step—and
the leaf bit (yes/no), only if the cell is homogeneous and not at the
finest level. Sign and leaf bits are emitted in two different streams
since their entropy encoding will use different contexts. We exper-
imented with different orders and different marking strategies but
found this approach to consistently yield the best results.

Implementation Although the algorithm is best described using
an octree representation, our implementation does not use a pointer-
based octree data structure: it would become very memory inten-
sive for large volume data. Instead, we use a light bitmap structure,
with leaf and sign bits stored in bit arrays of size N3. Surface sam-
ples are stored in a hash table. For performance reasons recursion
on the data structures is replaced by a simple FIFO queue. Such
structures make for a small memory footprint, and enable us to en-
code very large datasets (10243 and larger).

Context-based Arithmetic Coding As an entropy coder we
use Wheeler’s multi-symbol arithmetic coder [1996], since it out-
performed other encoders we tried. To further improve compres-
sion rates we use context modeling [Pennebaker and Mitchell 1993]
which automatically updates context based probability tables to
learn patterns in the bitstream and reduce the entropy accordingly.
We found the performance of this context based arithmetic encod-
ing highly dependent on the choice of context, with good con-
texts drastically reducing bitrate as already demonstrated in [Taubin
2002].

After many trials, we chose the following contexts for their con-
sistently good performance:
• the sign bitstream uses a JBIG-style 15-bit context: the seven

neighboring sign bits from the corners of the same cell (in lex-
icographic order) followed by the eight sign bits of the parent
cell. For signs not yet transmitted we use zeros in the context.

• the leaf bitstream uses only a one-bit context consisting of the
previous leaf bit sent. Zeros are used for bootstrapping.

Geometry Although this first part of our compression technique
can be seen as a pure hierarchical topology description, geometric
information is implicitly present. The grid nature of an isosurface
intertwines topology and geometry at all levels of the octree. Inho-
mogeneous edges, independent of their level in the hierarchy, inter-
sect the isosurface, implying that we have approximate positions for
the vertices throughout the connectivity transmission process. The
shorter the edges, i.e., the finer the level of the octree, the better the
approximation. The final vertex positions will need extra geometry
bits.

In practice, we update the display each time a new inhomoge-
neous cell has been received. The Dual Contouring algorithm is
called locally to rebuild the mesh for display. It requires a vertex
for each inhomogeneous cell. We use the barycenter of the mid-
points of each inhomogeneous edge. Figures 1 and 5, as well as the
r/d curves (Figure 4), demonstrate the quality of progressive visual
increments throughout the connectivity transmission. For some iso-
surfaces, stopping at the end of the connectivity decoding phase (or
even earlier) may provide enough geometric accuracy (smoothing
techniques can be used to improve the visual aspect): for single rate
coding this was already suggested by Taubin [2002]. When higher
geometric fidelity is desired, explicit geometry bits are sent in the
final phase.

3.3 Geometry Encoding
At the end of the octree decoding phase the final topology has been
recovered, but the geometric positions can still be further refined. In
contrast to all previous methods, we do not choose to localize ver-
tex positions on edges (as in MC), but within cells. At first sight this
appears more costly since there are now three coordinate residuals

rather than one. In running experiments for a large number of iso-
surfaces we found that locations along edges are distributed more
or less uniformly, i.e., these locations have high entropy. Interest-
ingly, the entropy, and thus the ultimate bit budget, is much lower
for Dual Contouring vertex residuals. There is another advantage
to using the Dual Contouring method: it accommodates surfaces
with sharp features and is thus more general than MC. Previous
isosurface coders could not handle this more general case. To re-
duce entropy, we send the final position as prediction residuals, i.e.,
the difference between a predicted position and the actual position.
This residual is expressed in a local frame, which further reduces
entropy.

Local Coordinate Frame We begin by visiting all octree cells
at the finest level. For each inhomogeneous cell (i.e., a cell con-
taining a surface sample) the barycenter of all inhomogeneous edge
midpoints is computed. Call this the predicted vertex location. The
decoder can perform the same computation without any further in-
formation. Recall that the actual Dual Contouring sample location
was computed by the encoder during the initial octree construction.
To build the local coordinate frame we compute a least squares fit-
ting plane based on all inhomogeneous edge midpoints. There are
only 256 different cases possible, so a simple lookup table for the
least-square plane is sufficient. The predicted vertex location is on
this plane and may be taken to be a local origin. The local frame
now follows from the normal direction and an arbitrary but fixed
choice of orthogonal basis vectors in the plane. In our implemen-
tation, we pick x to be the normalized projection of the global unit
vector i onto the plane; if the plane is normal to this direction, we
pick j instead. The y-axis follows as the cross product of the nor-
mal and x.

Coordinate Encoding Once the prediction vectors have been
expressed in their respective local frames we determine the three—
two tangent (x, y) and one normal (z)—global ranges of each co-
ordinate and send these three ranges to the decoder at the beginning
of the geometry encoding phase. A quantization of the coordinates
of all prediction vectors is then performed, with more bins used for
the normal direction than for the tangent directions [Khodakovsky
et al. 2000; Alliez and Desbrun 2001; Lee et al. 2002]. We found
that using 6 to 10 bins for x and y, and 12 to 20 bins for z lead to
the best r/d performance in all our tests. Finally, in order to achieve
a fine-grain transmission, we send the geometry bits in two passes:
first the z coordinates, then the x and y coordinates.

Context Modeling The geometric residuals described above
are encoded in a separate geometry bitstream, using a context-based
arithmetic encoder as before (Section 3.2). The eight sign bits of the
containing cell are used for context.

4 Results
We have run tests on a number of isosurface datasets and experi-
mented with a variety of encoding methods. Here we report quanti-
tative and qualitative results of these experiments. Figures 1 and 5
show progressive reconstructions of a variety of surfaces together
with rates and distortions. All images are flat shaded to more clearly
show the surfaces. No postsmoothing has been performed. These
images qualitatively indicate that the early reconstructions give use-
ful overall views of the isosurface while finer level detail, both geo-
metric and topologic, appears gracefully. Note that all tessellations
throughout the reconstruction process are watertight because of the
use of the Dual Contouring method. More detailed quantitative data
is recorded in Tables 2 and 3, while r/d performance throughout the
reconstruction process is plotted in Figure 4. On average (using ten
isosurfaces) we find bitrates of 6.10 b/v of which the octree encod-
ing consumes 0.65 b/v. Explicit geometry (prediction residuals at
the finest level) use up the remainder of 5.45 b/v. This implies that
most of the rate is used at the leaf level. The r/d curves show that

this additional rate is well spent if high fidelity reconstructions are
called for. Note finally that both the encoding and decoding phases
of a 2573 volume take about 20 seconds on a 1GHz PIV 512Mb
computer with our current implementation.

Headscan Dragon Horse Buddha
Bonsai Engine Sphere Triceratops
Feline Eight

60

40

20

8 10 12 14 16 18

Rate-Distortion (level 6 to End)

0

2

4

6

8

11 13 15 17

Log(bytes,2)

D
is
to
rti
on

Figure 4: R/d curves (relative L2 error in multiples of 10−4 as
a function of total bytes transmitted on a semi-log scale) for ten
example isosurfaces (all from 2573 volumes). The bottom graph
shows results throughout the transmission while the inset graph
gives a closeup of the explicit geometry phase of transmission (with
a steeper slope).

Isosurf. Sign stream Leaf stream Con. rate Ours/BLIC
models (byte) (byte) (b/v) (%)
MRI-head 132891 19055 0.86 92
Engine 16431 1014 0.46 78
Headscan 22733 2224 0.71 86
Sphere 13718 10 0.51 58
Feline513 17679 2581 0.84 73
Dragon513 12753 642 0.56 65
Bonsai 16058 4266 0.98 93
Buddha 6324 515 0.68 82
Horse 4703 151 0.56 67
Eight 4618 101 0.56 65
Triceratops 2419 142 0.61 75
Average 0.67 76
Temple 1348 241 0.06 81

Table 2: Connectivity Encoding of sample datasets: sign bitstream,
leaf bitstream, and total connectivity rate in b/v. Temple (synthetic
data) is given separately and is not included in the average. The ra-
tio of improvement over the current best single rate encoder [Taubin
2002] is also indicated.
4.1 Discussion
Ideally one would like to compare different algorithms against the
same dataset computing rates and distortions on the same scale. At
present the results in the literature are few and reported in incon-
sistent ways, making real comparisons hard. For example, some
authors give compression ratios against formats such as ASCII
VRML. Unfortunately such numbers are very soft since ASCII files
can be arbitrarily verbose, leading to ill-defined ratios. In any case,
without specifying the distortion any ratio or file size is of limited
utility. Nonetheless, we have attempted to perform at least some
informal comparisons.

Isosurf. Geo. stream Geo. rate Tot. streams Tot. rate
models (byte) (b/v) (byte) (b/v)
Engine 190264 5.00 208199 5.46
Headscan 201597 5.76 226554 6.47
Sphere 160217 6.00 173945 6.52
Feline513 99110 4.11 119370 4.95
Dragon513 109103 4.57 122498 5.13
Bonsai 125384 6.06 145708 7.04
Buddha 54325 5.38 61164 6.06
Horse 48852 5.64 53706 6.20
Eight 51694 6.15 56413 6.71
Triceratops 24700 5.86 27261 6.47
average 5.45 6.10
Temple 93246 3.39 94956 3.45

Table 3: Encoding of sample datasets: Number of bits sent during
the geometry encoding phase, and corresponding rates; total num-
ber of bits (connectivity + geometry encoding) for each dataset,
along with achieved rates per vertex.

Laney et al. [2002] introduced a progressive isosurface compres-
sion method based on encoding an associated distance function.
They reported results for two models, one of them being the horse
on a grid of size 96 × 208 × 173. Their final size was 66 KB with
0.8 as reported distortion. We achieved a final size of 52.4KB at a
distortion of 0.56. Samet and Kochut [2002] used an adaptive oc-
tree and provided measured entropies of their symbol sequences at
0.847 bits per symbol. Such entropies appear fairly high compared
to our achieved bit rates for the octree description.

There are somewhat more results available for single rate isosur-
face coders. The current leading coder of this type appears to be
the one proposed by Taubin [2002]. Our algorithm improves on his
results by an average of 24% (see Table 2), even though our algo-
rithm is progressive. To evaluate the geometry coding performance
distortion measures are required, which, unfortunately, are not pro-
vided by any previous work. Saupe and Kuska [2001; 2002] give
compression ratios for 12-bit quantization and reported better ratios
than Touma and Gotsman’s [1998]. We found that such quantiza-
tion leads to distortions on the order of 0.5(10−4) to 1.0(10−4)
and use this as a basis for comparison. They tested four simple
isosurfaces of one component each and several isosurfaces gener-
ated from a CT scan using different isovalues. Their best result
was 1.2% of its ASCII VRML representation [2002]. While their
models are different we computed an average ratio for our, more
complex, isosurfaces of 0.71%, which represents an additional re-
duction of 41%. Note that the finer the grid the more our method
improves over previous techniques.

5 Summary and Future Work
To summarize, we have introduced a simple and efficient progres-
sive encoding technique specifically designed for isosurfaces. Our
algorithm supports more general isosurfaces than previous algo-
rithms due to the use of Dual Contouring. We also found that this
lowers the entropy of prediction residuals significantly, leading to
significantly better bit rates when compared to any previously pub-
lished compression results, be they single rate isosurface specific,
or achieved by a general purpose mesh compression method.

Supporting view dependent refinement in the decoder is an inter-
esting problem for future work. Finally, we wish to explore other
avenues to decorrelate the bits describing the octree hierarchy. Our
current approach of using hierarchical parents for prediction at chil-
dren can be likened to a Haar transform on the sign bits. More so-
phisticated binary valued wavelet transforms are possible and may
lead to further improvements and insights.

Acknowledgment This work was supported in part by NSF
(DMS-0220905, DMS-0138458, DMS-0221666, DMS-0221669,

CCR-0133983, EEC-9529152, ACI-0219979), the DOE (W-7405-
ENG-48/B341492), nVidia, the Center for Integrated Multi-
scale Modeling and Simulation, Intel, Alias|Wavefront, Pixar,
and the Packard Foundation. Special thanks to Pierre Al-
liez, Scott Schaefer, Joe Warren, and C.-C. Jay Kuo. Datasets
are courtesy of Rezk-Salama et al. (http://www9.informatik.uni-
erlangen.de/Persons/Rezk/Research/VolRen), Zoë Wood, Stanford
Graphics Group, Scott Schaefer, and Sylvain Jaume.

References
ALLIEZ, P., AND DESBRUN, M. 2001. Progressive Encoding for Lossless Transmis-

sion of 3D Meshes. In Proc. of SIGGRAPH, 198–205.
BAJAJ, C. L., PASCUCCI, V., AND ZHUANG, G. 1999. Progressive Compression

and Transmission of Arbitrary Triangular Meshes. In Proc. of IEEE Visualization,
307–316.

BLOOMENTHAL, J. 1997. Introduction to Implicit Surfaces. Morgan Kaufmann.
CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 1998. Metro: Measuring Error on

Simplified Surfaces. Computer Graphics Forum 17, 2, 167–174.
DEERING, M. 1995. Geometry Compression. In Proc. of SIGGRAPH, 13–20.
GANDOIN, P.-M., AND DEVILLERS, O. 2002. Progressive Lossless Compression of

Arbitrary Simplicial Complexes. ACM Trans. on Graphics 21, 3, 372–379.
GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry Images. ACM Trans. on

Graphics 21, 3, 355–361.
HOPPE, H. 1996. Progressive Meshes. In Proc. of SIGGRAPH, 99–108.
JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002. Dual Contouring of

Hermite Data. ACM Trans. on Graphics 21, 3, 339–346.
KHODAKOVSKY, A., SCHRÖDER, P., AND SWELDENS, W. 2000. Progressive Ge-

ometry Compression. In Proc. of SIGGRAPH, 271–278.
KOBBELT, L. P., BOTSCH, M., SCHWANECKE, U., AND SEIDEL, H.-P. 2001. Fea-

ture Sensitive Surface Extraction from Volume Data. In Proc. of SIGGRAPH, 57–
66.

LACHAUD, J.-O. 1996. Topologically Defined Iso-surfaces. In Proc. 6th Discrete
Geometry for Computer Imagery, Springer-Verlag, Berlin, vol. 1176, 245–256.

LANEY, D., BERTRAM, M., DUCHAINEAU, M., AND MAX, N. 2002. Multireso-
lution Distance Volumes for Progressive Surface Compression. In Proc. of the 1st
Intl. Symp. on 3D Data Processing Visualization and Transmission, 470–479.

LEE, H., ALLIEZ, P., AND DESBRUN, M. 2002. Angle-Analyzer: A Triangle-Quad
Mesh Codec. Computer Graphics Forum (Proc. of Eurographics) 21, 3, 383–392.

LINDSTROM, P. 2000. Out-of-Core Simplification of Large Polygonal Models. In
Proc. of SIGGRAPH, 259–262.

LORENSEN, W., AND CLINE, H. 1987. Marching Cubes: A High Resolution 3D
Surface Construction Algorithm. Computer Graphics (Proc. of SIGGRAPH) 21, 4,
163–169.

PAJAROLA, R., AND ROSSIGNAC, J. 2000. Compressed Progressive Meshes. IEEE
Trans. on Visualization and Computer Graphics 6, 1, 79–93.

PENNEBAKER, W. B., AND MITCHELL, J. L. 1993. JPEG: Still Image Date Data
Compression Standard. Van Nostrand Reinhold.

ROSSIGNAC, J. 1999. EdgeBreaker : Connectivity Compression for Triangle Meshes.
IEEE Trans. on Visualization and Computer Graphics 5, 1, 47–61.

SAMET, H., AND KOCHUT, A. 2002. Octree Approximation and Compression Meth-
ods. In Proc. of the 1st Intl. Symp. on 3D Data Processing Visualization and Trans-
mission, 460–469.

SAUPE, D., AND KUSKA, J.-P. 2001. Compression of Isosurfaces for Structured
Volumes. In Proc. of Vision, Modeling and Visualization, 333–340.

SAUPE, D., AND KUSKA, J.-P. 2002. Compression of Isosurfaces for Structured
Volumes with Context Modelling. In Proc. of the 1st Intl. Symp. on 3D Data Pro-
cessing Visualization and Transmission, 384–390.

SCHAEFER, S., AND WARREN, J. 2002. Dual Contouring: “The Secret Sauce”. Tech.
rep., Rice University.

TAUBIN, G., AND ROSSIGNAC, J. 1998. Geometry Compression Through Topologi-
cal Surgery. ACM Trans. on Graphics 17, 2, 84–115.

TAUBIN, G., GUEZIEC, A., HORN, W., AND LAZARUS, F. 1998. Progressive Forest
Split Compression. In Proc. of SIGGRAPH, 123–132.

TAUBIN, G. 2002. BLIC: Bi-Level Isosurface Compression. In Proc. of IEEE Visual-
ization, 451–458.

TOUMA, C., AND GOTSMAN, C. 1998. Triangle Mesh Compression. In Proc. of
Graphics Interface, 26–34.

WHEELER, F., 1996. Adaptive Arithmetic Coding Source Code.
http://www.cipr.rpi.edu/˜wheeler/ac.

YANG, S.-N., AND WU, T.-S. 2002. Compressing Isosurfaces Generated with March-
ing Cubes. The Visual Computer 18, 1, 54–67.

ZHANG, X., BAJAJ, C., BLANKE, Q., AND FUSSELL, D. 2001. Scalable Isosurface
Visualization of Massive Datasets on COTS Clusters. In Proc. of IEEE Symp. on
Parallel and Large Data Visualization and Graphics, 51–58.

http://www9.informatik.uni-erlangen.de/Persons/Rezk/Research/VolRen
http://www9.informatik.uni-erlangen.de/Persons/Rezk/Research/VolRen
http://www-grail.usc.edu/pubs/AD_progressive.pdf
http://www-grail.usc.edu/pubs/AD_progressive.pdf
http://www.ticam.utexas.edu/CCV/papers/cpm-all.pdf
http://www.ticam.utexas.edu/CCV/papers/cpm-all.pdf
http://doi.acm.org/10.1145/218380.218391
ftp://ftp-sop.inria.fr/prisme/publis/gd-plcas-02.pdf
ftp://ftp-sop.inria.fr/prisme/publis/gd-plcas-02.pdf
http://research.microsoft.com/~hoppe/gim.pdf
http://research.microsoft.com/~hoppe/pm.pdf
http://www.cs.rice.edu/~sschaefe/research/dualcontour.pdf
http://www.cs.rice.edu/~sschaefe/research/dualcontour.pdf
http://www.multires.caltech.edu/pubs/compression.pdf
http://www.multires.caltech.edu/pubs/compression.pdf
http://doi.acm.org/10.1145/383259.383265
http://doi.acm.org/10.1145/383259.383265
http://www.llnl.gov/icc/sdd/img/images/pdf/laney_3dpvt02_final_v2.pdf
http://www.llnl.gov/icc/sdd/img/images/pdf/laney_3dpvt02_final_v2.pdf
http://www-grail.usc.edu/pubs/LAD02.pdf
http://www-grail.usc.edu/pubs/LAD02.pdf
http://www.gvu.gatech.edu/people/peter.lindstrom/papers/siggraph2000/siggraph2000.pdf
http://doi.acm.org/10.1145/37401.37422
http://doi.acm.org/10.1145/37401.37422
http://www.ics.uci.edu/~pajarola/pub/CPM.pdf
http://www.gvu.gatech.edu/~jarek/papers/eb.pdf
http://wwwvis.informatik.uni-stuttgart.de/vmv01/dl/posters/16.pdf
http://wwwvis.informatik.uni-stuttgart.de/vmv01/dl/posters/16.pdf
http://www.gvu.gatech.edu/~jarek/papers/ts.pdf
http://www.gvu.gatech.edu/~jarek/papers/ts.pdf
http://www.research.ibm.com/people/t/taubin/pdfs/taubin-etal-sg98.pdf
http://www.research.ibm.com/people/t/taubin/pdfs/taubin-etal-sg98.pdf
http://www.research.ibm.com/people/t/taubin/pdfs/Taubin-vis02.pdf
http://www.cs.technion.ac.il/~gotsman/publications.html
http://www.cipr.rpi.edu/~wheeler/ac
http://link.springer-ny.com/link/service/journals/00371/papers/2018001/20180054.pdf
http://link.springer-ny.com/link/service/journals/00371/papers/2018001/20180054.pdf
http://www.ticam.utexas.edu/CCV/papers/pvg01.pdf
http://www.ticam.utexas.edu/CCV/papers/pvg01.pdf

-4

Octree level
Bytes passed
Distortion(10)

5
132
136.11

7
1396
21.00

8
3982
5.63

8 + 33%
13455
3.70

8+100%
32400
0.75

5
191
68.16

7
1563
9.06

8
4854
4.44

8+30%
21138
2.79

8+100%
53706
0.52

5
202
116.95

8
6839
5.05

7
2292
33.48

8 + 100%
61164
0.52

5
622
303.47

7
8411
32.72

8
20324
3.66

8+ 100%
145708
0.47

5
587
96.31

8
17445
5.92

8 +100%
94835
0.48

5
278
73.82

8
1589
6.40

8+100%
207709
0.52

8+100%
173945
0.38

8+100%
56413
0.56

8 + 100%
27261
0.63

8 + 100%
25824
0.94

7 + 100%
341114
7.29

Figure 5: Examples of progressively decoded isosurfaces from octree hierarchies eight levels deep, shown at different stages during the
transmission. Rates are given in bytes. Distortions are relative L2 errors measured by Metro [1998], normalized to the bounding box
diagonal length and scaled to 10−4. From top to bottom: Dragon, Horse, Buddha and Bonsai, Engine and Temple, Sphere, Triceratops,
Feline, Eight, and MRI-Head. Sphere, Horse, Eight, and Triceratops are scan-converted from meshes to volume data to compare with
previous mesh compression methods.

	Introduction
	Setup and Design Choices
	Isosurface Encoding Algorithm
	Adaptive Octree Construction
	Connectivity Encoding
	Geometry Encoding

	Results
	Discussion

	Summary and Future Work

