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Abstract

We present a model-reduced variational Eulerian integrator for in-
compressible fluids, which combines the efficiency gains of di-
mension reduction, the qualitative robustness of coarse spatial and
temporal resolutions of geometric integrators, and the simplicity of
sub-grid accurate boundary conditions on regular grids to deal with
arbitrarily-shaped domains. At the core of our contributions is a
functional map approach to fluid simulation for which scalar- and
vector-valued eigenfunctions of the Laplacian operator can be eas-
ily used as reduced bases. Using a variational integrator in time to
preserve liveliness and a simple, yet accurate embedding of the fluid
domain onto a Cartesian grid, our model-reduced fluid simulator
can achieve realistic animations in significantly less computational
time than full-scale non-dissipative methods but without the numer-
ical viscosity from which current reduced methods suffer. We also
demonstrate the versatility of our approach by showing how it eas-
ily extends to magnetohydrodynamics and turbulence modeling in
2D, 3D and curved domains.
CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation.
Keywords: Computational fluid dynamics, model reduction, Eule-
rian simulation, energy preservation, sub-grid-resolution geometry.

1 Introduction

Accurate simulation of incompressible fluids is a well-studied topic
in computational fluid dynamics. Fluid animation research is driven
by a different emphasis: in the context of computer graphics, the
focus is on capturing the visual complexity of typical incompress-
ible fluid motions (such as vortices and volutes) with minimum
computational cost. However, this relentless quest for efficiency
has often resulted in time integrators that exhibit large numeri-
cal viscosity [Stam 1999], as they proceed via operator splitting
through advection followed by divergence-free projection. The in-
curred numerical dissipation has also, besides its obvious visual ar-
tifacts, the unintended consequence that previews on coarse spa-
tial and temporal resolutions are far from predictive of the final,
high-resolution run. Non-dissipative methods have been proposed
more recently [Mullen et al. 2009]; however, they require large,
non-linear solves, hampering efficiency. On the other hand, model-
reduced integrators [Treuille et al. 2006] manipulate a smaller set
of degrees of freedom found via Galerkin dimension reduction to
capture the main components of the flow efficiently, at the cost of
excessive vorticity smearing. Similarly, regular spatial grids are of-
ten preferred due to their significantly lighter data structures and
sparser stencils—yet, their use conflicts with the proper treatment
of boundary conditions over complex, non-grid-aligned domains.

Figure 1: Model-reduced fluids on regular grids. Our energy-
preserving approach integrates a fluid flow variationally using a
small number of divergence-free velocity field bases over an arbi-
trary domain (visualized here are the 5th, 10th, and 15th eigenvec-
tors of the 2-form Laplacian) computed with subgrid accuracy on a
regular grid (here, a 42×42×32 grid). Our integrator is versatile:
it can be used for realtime fluid animation, magnetohydrodynamics,
and turbulence models, with either explicit or implicit integration.

While pressure projection with subgrid accuracy have been recently
proposed on Cartesian grids [Batty et al. 2007; Ng et al. 2009], non-
dissipative methods still require boundary-conforming meshes.

In this paper, we introduce a variational model-reduced Eulerian
fluid solver with sub-grid accuracy which bypasses the traditional
numerical curses of Galerkin projected dynamics, while keeping
the efficiency of Cartesian grid-based simulation.

1.1 Background

Early computer animation Eulerian methods for incompressible
fluid simulation were based on explicit finite differences [Foster
and Metaxas 1997] which suffered from the slow convergence of
their iterative approach to divergence-free projection. Stam [1999]
introduced semi-Lagrangian advection and a sparse Poisson solver
which brought much improved efficiency and stability. However,
these improvements came at the cost of significant dissipation—a
common issue that one can partially mitigate via vorticity confine-
ment [Steinhoff and Underhill 1994], reinjection of vorticity with
particles [Selle et al. 2005], or curl correction [Zhang et al. 2015].
Significantly less dissipative time integrators were also proposed
through semi-Lagrangian advection of vorticity [Elcott et al. 2007],
or even energy-preserving methods [Mullen et al. 2009]. How-
ever, these improved numerical methods often carry higher compu-
tational costs. Consequently, coupled Eulerian-Lagrangian (hybrid)
methods (see, for instance, [Losasso et al. 2008; Golas et al. 2012])
have flourished recently, as they offer a good compromise between
efficiency and dissipation.

Handling boundaries well is also crucial for incompressible fluids,
as boundary layers can significantly impact fluid motion. Avoiding
the staircase effects that voxelized domains generate was achieved
using simplicial meshes or hybrid meshes [Feldman et al. 2005],
but irregular connectivity often affects the efficiency of the solvers
involved. Inspired by the immersed boundary and interface meth-
ods, the use of regular grids with modified numerical operators to
handle arbitrary domains was proposed in [Batty et al. 2007], then
made convergent by [Ng et al. 2009] while maintaining symmetry
of the solves needed by the integrators. Another approach using
virtual nodes was also proposed recently [Howes et al. 2013].

Fluid simulation over non-flat domains has received significant



attention as well. Most notably, Stam adapted his Stable Fluid
method to handle curvilinear coordinates [Stam 2003], while Azen-
cot et al. [2014] recently proposed to use the Lie derivative operator
representation in the spectral domain to represent a velocity field on
an arbitrary surface, and performed advection of vorticity through
a linearized exponential map of the operator representation. Meth-
ods that are using only intrinsic operators can also handle curved
domains without alterations [Elcott et al. 2007; Mullen et al. 2009].

While most Eulerian methods use a finite-dimensional description
of the fluid using DOFs on cell faces or centers, model reduction
was also introduced in an effort to approximate the fluid motion
using only a small number of basis functions. The early days of
computational fluid dynamics for atmospheric simulation proposed
to reduce complexity by discarding high frequencies through the
use of a low number of modes (typically, harmonics or spheri-
cal harmonics) to describe the vector field [Silberman 1954; Yu-
dovich 1963], while pseudo-spectral methods leveraged fast con-
version between modal coefficients and spatial representation via
the Fast Fourier Transform for highly symmetric domains [Orszag
1969]. Dimensionality reduction was first introduced for fluid ani-
mation by Treuille et al. [2006] through Galerkin projection onto a
reduced set of basis functions computed through principal compo-
nent analysis of a training set of fluid motions. Their method was
demonstrated on regular grids, but is generalizable to tetrahedral
meshes. A number of works followed, proposing the use of dif-
ferent bases such as Legendre polynomials [Gupta and Narasimhan
2007], trigonometric functions [Long and Reinhard 2009], or even
non-polynomial Galerkin projection [Stanton et al. 2013]; eventu-
ally, Laplacian eigenvectors were pointed out by [De Witt et al.
2012] to be particularly appropriate harmonics as they guarantee di-
vergence free flows and facilitate the conversion between vorticity
and velocity, while offering a sparse advection operator for sym-
metric domains. These eigenfunctions also allow easy implementa-
tion of viscosity, and eliminate the need for training sets of velocity
fields. For simulations involving moving solids, model reduction
can also be conducted on a moving grid [Cohen et al. 2010]. The
use of cubature, initially proposed to achieve model-reduced simu-
lation of elastic models [An et al. 2008; von Tycowicz et al. 2013;
Li et al. 2014], can speed up re-simulation of fluids in a reduced
subspace as well [Kim and Delaney 2013]. However, the gain in
efficiency of all such model-reduced simulations is often counter-
balanced by (at times severe) energy or vorticity dissipation and the
need for unstructured meshes to capture complex boundaries.

1.2 Contributions

In this paper, we formulate a model-reduced variational fluid in-
tegrator that combines the benefits of non-dissipative integrators
with the use of dimension reduction and Cartesian grids over
arbitrary domains. Based on a description of the fluid motion
through functional maps, a variational integrator is derived from
Hamilton’s principle [Marsden and West 2001; Kharevych et al.
2006], resulting in a Lie algebra integrator with non-holonomic
constraints [Pavlov et al. 2011; Gawlik et al. 2011]. We use spec-
tral approximation of the functional map through (cell-based) scalar
and (face-based) vector Laplacian eigenvectors in order to offer
model reduction without losing the variational properties of the in-
tegrator, with controllable energy cascading. This setup allows us to
use not only low frequencies to capture the basic behavior of a flow,
but also a few selected higher frequencies to add realism at low cost.
Furthermore, we extend the embedded-boundary approach of [Ng
et al. 2009] to our framework in order to compute spectral (scalar-
and vector-valued) basis functions of arbitrary domains directly on
regular grids for fast computations with sub-grid accuracy. Finally,
our approach uses the typical Eulerian setup of flux-based solvers;
consequently, addition of fine details through spectral noise [Stam

Figure 2: 3D bunny buoyancy test: A hot cube of air initially
located at the center of a 3D bunny-shaped domain is advected
through buoyancy. Computations were performed using a modified
Hodge star on a 42×42×32 grid, with only 100 modes.

and Fiume 1993], wavelet [Kim et al. 2008], empirical mode de-
composition [Gao et al. 2013], subgrid turbulence [Schechter and
Bridson 2008; Narain et al. 2008], curl correction [Zhang et al.
2015], or through enforcing Lagrangian coherent structure [Yuan
et al. 2011] can be done straightforwardly. We demonstrate the effi-
ciency of our resulting integrator through a number of examples in
2D, 3D, and curved 2D domains, as well as its versatility by point-
ing out how to extend its use to magnetohydrodynamics, subgrid
scale models, and other fluid equations. Our paper thus extends the
variational approach of [Mullen et al. 2009; Gawlik et al. 2011] to
arbitrary reduced bases, adopts the (now Eulerian) vorticity advec-
tion of [Elcott and Schröder 2006], and offers a structure-preserving
version of the Laplacian-based integrator of [De Witt et al. 2012].

Note that our contributions are numerical in nature. They do not
target improvements in visual complexity, but in efficiency (through
embedding of arbitrary boundaries on Cartesian grids, §3.4), gener-
ality (arbitrary reduced bases can be employed, §3.6), and control-
lability (energy cascading and viscosity are consistent across tem-
poral and spatial scales, §3.5).

2 Recap of Variational Eulerian Integration

In order to provide fluid simulations with stable long-term behavior
across different space or time resolutions, Pavlov et al. [2011] intro-
duced a variational integrator for fluids in Eulerian representation
by discretizing the fluid motion as a Lie group acting on the space
of functions, and formulating the kinetic energy on its Lie algebra.
The motion of an incompressible, inviscid fluid is described in the
continuous setting by a volume-preserving flow φt, i.e., a particle
which is at a point p at time t=0 will be found at φt(p) after being
advected by the flow. The set of all such possible flows is given
by the set of volume-preserving maps φt from the domain to itself.
This set having the structure of an infinite-dimensional Lie group,
it was discretized into a finite-dimensional Lie group for compu-
tational purposes. Moving from a Lie group to the associated Lie
algebra connects the Lie group viewpoint of flows and “functional
maps” [Azencot et al. 2014] to the Lie algebra viewpoint of vector
fields, as we now briefly review.

2.1 Discretization process

We assume that the fluid domain is discretized as a mesh. Without
loss of generality, we restrict our discussion to regular grids for sim-



plicity, as we will show in Sec 3.4 how to embed arbitrary domains
into a Cartesian grid. We discretize a continuous function f(x) on
our space by taking an average (integrated) value fi per grid cell i of
the mesh, which we arrange in a vector f . This definition of discrete
functions allows us to discretize the set of possible flows φt using a
functional map (or Koopman operator) (f ◦φ−1

t )(x)=f(φ−1
t (x)).

Specifically, this functional map is encoded as a matrix q of size
the square of the number of cells, representing the action of φt on
any discrete function; that is, the integrated values f of f per cell
become qf once f is advected
by the flow φ. Because the
discrete flow acts as a func-
tional map, it should always
take the constant function to
itself. That is, for all q, we re-
quire that q1 = 1, where 1 is
a vector of ones (see [Pavlov et al. 2011] for the equivalent condi-
tion on an arbitrary mesh). This is the same as saying that the row
sums of q are equal to 1, i.e., q is signed stochastic. Since we are
simulating an incompressible fluid, we also require that the discrete
flow be volume-preserving. This condition is achieved by asking
that the discrete flow preserves the inner product of vectors, that
is, q is orthogonal, i.e., qt = q−1. Thus, we find that we need to
take q to be an element of the Lie group G of orthogonal, signed
stochastic matrices. This matrix group represents our discrete fluid
configuration, as we describe next.

2.2 The Eulerian Lie Algebra viewpoint

We can view the finite-dimensional Lie group G as a configuration
space: it encodes the space of possible “positions” for the discrete
fluid, in that each element of the Lie group represents a possible
way that the fluid could have evolved from its initial position. This
Lie group represents a Lagrangian perspective as it identifies the
fluid particles in a given cell by recording which cells they origi-
nally came from. The associated Eulerian perspective is given by
the Lie algebra g of matrices of the form q̇ ◦ q−1 for q ∈ G. It
was shown in [Pavlov et al. 2011] that any matrix A∈g of this Lie
algebra is both antisymmetric (At = −A) and row-null (A1 = 0),
and corresponds to a discrete counterpart of the Lie derivative Lv
with respect to the continuous velocity field v = φ̇ ◦ φ−1. Thus,
the product Af of such a matrix with a discrete function f approx-
imates the continuous term v · ∇f . Furthermore, if cells i and j
are nearest neighbors, then the matrix element Aij represents the
flux of the fluid through the face shared by cells i and j. Thus, an
element of the Lie algebra g of G is directly linked to the usual
flux-based (Marker And Cell) discretization of vector field in fluid
simulators [Harlow and Welch 1965].

2.3 Non-holonomic constraint

Whilst the elements Aij for A ∈ g have a clear physical interpre-
tation in the case where i and j are nearest neighbors, this is not
the case for elements representing interactions between cells that
are not immediate neighbors. Similarly to a CFL condition, we
prohibit fluid particles from skipping to non-neighboring cells, by
restricting the Lie algebra to the constrained set S, the set of ma-
trices A such that Aij = 0 unless cells i and j share a face (or an
edge in 2D). We require the elements of g that we use to represent
the fluid velocity fields to fall into this constrained set. This has the
additional advantage of making the matrices sparse, dramatically
decreasing the amount of memory required and the computational
time, as much fewer degrees of freedom need to be updated—and
now, the traditional MAC discretization with fluxes corresponds ex-
actly to a Lie algebra element in this constrained set.

Constraining the matrices in this way requires a non-holonomic
constraint, because the set S is not closed under the Lie bracket.

That is, interactions between nearest neighbors followed by fur-
ther interactions between nearest neighbors produce interactions
between cells that are two-away from each other, which are there-
fore not inside the constrained set S.

2.4 Creating a variational numerical method

Using this discretization, one can create a variational numerical
method for ideal, incompressible fluids through the Euler-Poincaré
equations [Gawlik et al. 2011] for the Lagrangian given by

LEuler =
1

2
〈A,A〉 ≈ 1

2

∫
v2 dx, (1)

and subject to the non-holonomic constraint A ∈ S. The result-
ing numerical method exhibits no numerical dissipation, and pro-
duces good qualitative behavior over long timescales. Changing the
time integration scheme to be time reversible leads to exact energy
preservation [Mullen et al. 2009]. With control over dissipation
and robustness to time step and grid size, this computational tool
greatly facilitates the design of fluid animation. Note that this vari-
ational integrator also guarantees that the relabeling symmetry im-
plies a discrete version of Kelvin’s circulation theorem, i.e., circu-
lation of velocity field (represented as a Lie algebra element) along
a closed loop (represented as a 1-cycle [Pavlov et al. 2011]) trans-
ported along the fluid flow is invariant, which helps keep the vivid
details of vorticity in the fluid simulation without resorting to addi-
tional energy-injecting measures such as vorticity confinement, as
shown in [Elcott et al. 2007; Mullen et al. 2009]. However, the time
integration requires a quadratic solve based on all the fluxes in the
domain, making it inappropriate for realtime simulation.

3 Model-reduced Variational Integrator

We present an integrator which extends the approach of [Pavlov
et al. 2011], using a different functional-map Lie group, similarly
interlinked with an Eulerian velocity-based Lie algebra picture. Our
method offers the additional advantage of fast computations on ar-
bitrary domains: we use reduced coordinates to encode the most
significant components of the spatial scalar and vector fields, and
perform subgrid accurate precomputations on simple regular grids.
We will focus on Euler equations first, before discussing variants
such as Navier-Stokes and magnetohydrodynamics (MHD).

3.1 Spectral Bases

We first define the discrete, reduced scalar and velocity fields on
which our functional map Lie group will act. Extending what was
advocated in [De Witt et al. 2012], we use the orthonormal bases for
2-forms and 3-forms given by the eigenfunctions of the deRham-
Laplacian operators on an arbitrary discrete mesh M. These are
calculated using the discrete operators of Discrete Exterior Cal-
culus [Desbrun et al. 2008; Arnold et al. 2006], allowing us to
leverage the large literature on their implementation and structure-
preserving properties. From this small set of basis functions, we
efficiently encode through reduced coordinates the full-space fields
typically used in the MAC scheme, i.e., fluxes through cell bound-
aries (discrete 2-forms) to represent velocity fields, and densities
integrated in each cell (discrete 3-forms) to represent scalar fields
(such as smoke density or geostrophic momentum in rotating strat-
ified flow [Desbrun et al. 2013]).

Choice of bases. We denote the i-th eigenfunction of the 3-form
Laplacian ∆3 as Φi, with associated eigenvalue −µ2

i ,

∆3Φi = −µ2
iΦi.

The eigenfunctions corresponding to the M3+1 smallest µi can be
assembled into a low-frequency basis

{Φ0, ...,ΦM3}.



Note that depending on the boundary condition, µ0 = 0 may cor-
respond to more than one harmonic function; but these remain sta-
tionary when advected by divergence-free velocity fields with zero
flux across the boundary, and are thus omitted in our discussion.

Similarly, we denote the i-th eigenfunction of the 2-form Laplacian
∆2 as Ψi, with its associated eigenvalue −κ2

i :

∆2Ψi = −κ2
iΨi.

We also assemble the first M2 eigenvector fields (corresponding to
the M2 smallest κi) into a finite dimensional low-frequency basis,

{Ψ1, ...ΨM2}.
Some of the 2-form eigenfunctions are not divergence-free, and
these eigenfunctions can be identified as gradient fields, ∇Φi/µi
(see §A). Thus, we can reorder the eigenfunctions of ∆2 into

{h1, ..., hβ1 ,
∇Φ1

µ1
, ...,
∇ΦM3

µM3

,Ψ1, ...ΨMC},

where hi are harmonic 2-forms (corresponding to frequency κi=0)
with β1 being the first Betti number determined by the topology
of the domain (basically, the number of tunnels plus the number
of connected components of the boundary minus one), and MC =
M2−M3−β1 denoting the number of non-harmonic but divergence-
free basis functions.

Discretization. Computing our spectral bases requires a proper dis-
cretization of the Laplacian operators and of boundary conditions.
Both topics are well studied, and many implementations can be
leveraged [Elcott and Schröder 2006; Bell and Hirani 2008]. In
particular, we note that discrete Laplacians are typically integrated
Laplacians, meaning that the two eigenvalue problems mentioned
above are discretized as two generalized eigenvalue problems

(?3∆3)Φi=−µ2
i ?3 Φi and (?2∆2)Ψi=−κ2

i ?2 Ψi

respectively, to make the discrete operators symmetric and thus al-
low for efficient numerical solvers. We provide a detailed guide to
discretization on arbitrary unstructured meshes in §A to explicate
how to enforce no-transfer and free-slip conditions (corresponding,
respectively, to vn|∂M= 0 and ∂vt/∂n |∂M= 0 if the continuous
velocity field is decomposed at the boundary into its normal and
tangential components, v = vn+vt). Note that only two opera-
tors are required: the exterior derivative d and the Hodge star ?.
The first operator is purely topological, while the second is just a
scaling operation per edge, face, and cell. Moreover, we will see
in §3.4 that this latter operator can be trivially modified to handle
arbitrary fluid domains without having to use anything else but a
regular grid. From these two operators, both Laplacians are easily
assembled, and low-frequency eigenfields are found via Lanczos
iterations.

3.2 Spectral Lie group

While earlier methods [Pavlov et al. 2011; Gawlik et al. 2011] have
defined scalar fields using a spatial representation through linear
combinations of locally-supported piecewise-constant basis func-
tions, we use a spectral representation through linear combinations
of the aforementioned spectral basis functions Φi, allowing us to
drastically reduce the number of degrees of freedom the integra-
tor will have to update, while still conforming to the shape of the
domain (see Fig. 3).

Lie group. We encode the fluid motion through a time-varying Lie
group element q(t) that represents a functional map induced by the
fluid flow φt, mapping a function f(x) =

∑
i fiΦi(x) linearly to

another function g(x)=
∑
i giΦi(x) such that g(x)=f ◦ φ−1(x).

As the function space is approximated by a finite dimensional space
spanned by low-frequency basis functions, q can be encoded by a
(M3+1)×(M3+1) matrix. The volume-preserving property of the

Figure 3: Effect of shape on spectral bases: The Laplacian eigen-
vectors depends heavily on the domain Ω. Here, rectangle (top) vs.
ellipse (bottom) domains (both computed on 2D rectangular grid of
size 602) exhibit very different eigenvectors Ψ10 and Φ10.

flow still implies the orthogonality of the matrix, i.e, qtq= Id. So
we are looking for a subgroup of O(M3+1), or, more accurately,
of SO(M3 +1), since we wish to describe gradual changes from
the identity. The condition that constant functions are mapped to
themselves in this low-frequency Lie group becomes q0i = δ0i and
qi0 = δi0, where δij is the Kronecker symbol, since 0-th frequency
represents the constant function. This effectively removes one di-
mension, and the Lie group that we are using is thus isomorphic to
SO(M3). This is much smaller than the full Lie group used for the
spatial representation [Pavlov et al. 2011] which had a dimension
proportional to the square of the number of cells of the mesh—a
potential reduction of several orders of magnitude.

Lie algebra. We identify each velocity eigenfunction Ψm with an
element of the Lie algebra of the above Lie group as follows. We
take the Lie derivative along the velocity field Ψm of a scalar eigen-
function Φj , then we project the resulting scalar field onto another
scalar eigenfunction Φj , producing a matrix Am for each velocity
eigenfunction Ψm, with entries

Am,ij =

∫
M

Φi(Ψm · ∇Φj). (2)

ComputingAm amounts to turning a 3-form into a dual 0-form first
with ?3, and then carrying out the integral in the (diamond) volume
spanned by each face and its dual edge: this way, the differential
of the dual 0-form from Φj is multiplied by the 2-form Ψm on the
face and the average dual 0-form from Φi on the face. Notice that
we have 〈Am, An〉=δmn by construction thanks to the basis of Ψ
being orthonormal. As in the non-spectral case, the divergence-free
condition leads to the antisymmetry of these matrices since

Am,ij+Am,ji =

∫
M

Ψm · ∇(ΦiΦj) = −
∫
M

ΦiΦj∇ ·Ψm = 0.

This is expected, since the Lie algebra so(M3) of SO(M3) con-
tains only antisymmetric matrices. The Lie algebra has a Lie
bracket operator, which is given by the usual matrix commutator
[Am, An]=AmAn −AnAm.

Non-holonomic constraint. Just like in [Pavlov et al. 2011], not
every element of the Lie algebra so(M3) will correspond to a fluid
velocity spanned by the eigenfunctions Ψm. We force the dynam-
ics on the Lie algebra to remain within the domain of physically-
sensible elements using the following non-holonomic constraint,
which keeps the velocity within the space spanned by the lowest
frequency MC+β1 divergence-free 2-form basis fields:

A =

MC+β1∑
i=1

vi Ai (3)



where vi is a coefficient for Ai representing the modal amplitude
of frequency κi. This linear condition can thus be seen as an in-
tuitive extension of the one-away spatial constraint on Lie algebra
elements used in [Pavlov et al. 2011] that we mentioned in §2.3.

3.3 Spectral variational integrator

The Lagrangian of the fluid motion (i.e., its kinetic energy in the
case of Euler fluids) can be written as LEuler = 1

2
〈A(t), A(t)〉 as we

reviewed in §2.4. Thus, the equation of motion can be derived from
Hamilton’s (least action) principle∫

〈A(t), δA〉dt = 0, (4)

where δA=δ(q̇q−1) is the variation ofA induced by variation of q.
If we denote B≡δqq−1, one has δA=δq̇q−1−q̇q−1δqq−1. Since
Ḃ= δq̇q−1−δqq−1q̇q−1, we find that δA is induced by variations
of q only if it satisfies Lin’s constraints [Gawlik et al. 2011]:

δA = Ḃ + [B,A], (5)
where B=

∑
i biAi is an arbitrary element of the Lie algebra with

coordinates {bi}i in the 2-form basis. Substituting Eq. (5) into
Eq. (4), we then have

0 =

∫
〈A, δA〉 dt

=

∫ ∑
i,k

viḃk 〈Ai, Ak〉+
∑
i,j,k

vivjbk 〈Ai, [Ak, Aj ]〉 dt

=

∫ ∑
k

(
−
∑
i

v̇i 〈Ai, Ak〉+
∑
i,j

vivj 〈Ai, [Ak, Aj ]〉
)
bk dt.

Since this last equation must be valid for any bk, the update rule for
the velocity field has to be:
v̇k =

∑
i

v̇i 〈Ai, Ak〉 =
∑
i,j

vivj 〈Ai, [Ak, Aj ]〉 ≡ vtCkv, (6)

where v is the column vector storing the coefficients vi of the dis-
crete velocity A (Eq. (3)), and Ck is the square matrix with

Ck,ij = 〈Ai, [Ak, Aj ]〉 =

∫
M

(∇×Ψi) · (Ψk×Ψj). (7)

Note that this velocity update do not even require the scalar (3-
form) bases used in the definition of the Lie group; however, these
bases become important in more general simulations, including
magnetohydrodynamics and rotating stratified flows.

Time integrator. The continuous-time update in Eq. (6) is then dis-
cretized via either a midpoint rule (which will lead to an energy-
preserving model-reduced variant of [Mullen et al. 2009]) or a
trapezoidal rule (which corresponds to a model-reduced variant of
the variational method of [Pavlov et al. 2011]). Specifically, the
midpoint rule is implemented as

vt+hk − vtk = h
∑
i,j

Ck,ij
vti + vt+hi

2

vtj + vt+hj

2
, (8)

The energy preservation can be easily verified by multiplying
vtk + vt+hk on both sides of the above equation, summing over k,
and invoking the property of coefficients Ck,ij = −Cj,ik. The
trapezoidal rule can, instead, be implemented as

vt+hk − vtk =
h

2

∑
i,j

Ck,ij(v
t
iv
t
j + vt+hi vt+hj ), (9)

which is derived from a temporal discretization of the action with
variation of (δq)q−1 for q along the path to be in the restricted
Lie algebra set (to enforce Lin constraints), see App. D. Both
the energy-preserving and trapezoidal variational rules are time-
reversible implicit methods solved through a simple quadratic set
of equations with a small number of variables. An explicit forward
Euler integration can also be used for small time steps in order to
further reduce computational complexity; no guarantee of good be-
havior over long periods of time is available in this case.

Discussion. Our structural coefficients Ck (which can be precom-
puted once the spectral bases are found) are similar to the advection
terms mentioned in [De Witt et al. 2012]. However, there are some
important differences. Although both expressions converge to the
same continuous limit, our variational approach produces coeffi-
cients that are exactly antisymmetric in j and k as the Lie bracket is
anti-symmetric, making our method energy-preserving without the
artifact-prone energy renormalization step advocated in their work.
We also note that the symmetry mentioned in their discretization
(specifically, κ2

jCk,ij =−κ2
iCk,ji) is, in fact, only valid in 2D as

we explain in §B. Moreover, our variational integrator also admits a
spectral version of Kelvin’s theorem as detailed in §C. Finally, our
approach is quite different from Azencot et al. [2014] even though
they, too, use an operator representation of vector fields. Because
they explicitly leverage the scalar nature of vorticity in 2D, their
work cannot be generalized to 3D. Additionally, their representa-
tion of vector (resp., vorticity) fields relies on spatial, piecewise-
linear (resp., piecewise constant) basis functions instead of using a
reduced set of basis functions.

3.4 Embedding complex domains on Cartesian grids

Unstructured meshes can be made to conform to arbitrary domains,
and the construction of Laplacians on simplicial meshes is well
documented (see §A). Therefore, one could use our approach on
simplicial meshes directly (see Fig. 4 for an example on a non-flat
triangle mesh). However, Cartesian (regular) grids always generate
much simpler data structures and sparser stencils for the structural
coefficients, so sticking to Cartesian grids is key when efficiency
is paramount. Yet, model-reduced fluid methods cannot easily deal
with complex domains using only a regular grid to embed it in.

We propose a simple extension of [Ng et al. 2009] to compute k-
form Laplacians of an arbitrary domain, still using a regular grid.
This renders the implementation of Laplacians and their boundary
conditions quite trivial, and removes the arduous task of tetrahedral-
izing arbitrary domains. This idea was introduced in [Batty et al.
2007] for their pressure-based projection, and a simple alteration
proposed by [Ng et al. 2009] made the approach robust and conver-
gent. We leverage this latter work by noticing that the modification
of the Laplacian ∆3 that they proposed amounts to a local change
to the Hodge star operator ?2.

More precisely, consider a domain Ω, e.g.
defined implicitly by a function χ via Ω =
{x |χ(x) ≥ 0}. Recall that the diago-
nal Hodge stars on a mesh M are all ex-
pressed using local ratios of measurements
(edge lengths, face areas, cell volumes) on
both the primal elements of M and its dual
elements [Desbrun et al. 2008]. The changes
to the Laplacian operator ∆3 that Ng et
al. [2009] introduced can be reexpressed by
an alteration of the Hodge star ?2 where each
primal area measurement only counts the part
of the primal face that is inside Ω, but dual
edge lengths are kept unchanged. We extend
this simple observation (which amounts to a
local, numerical homogenization to capture
sub-grid resolution) by computing modified
Hodge stars ?̂1, ?̂2, and ?̂3 where only the parts of the primal el-
ements (partial lengths, areas, or volumes) that are within the do-
main Ω are counted (see inset). Note that changing directly the
Hodge stars does not affect the symmetry and positive-definiteness
of the Laplacians, and thus incurs no additional cost for our method.

This straightforward extension allows us to compute our spectral
bases on regular grid for arbitrary domains Ω as illustrated in the



Algorithm 1 Model-reduced variational integrator

1: Construct 2-form spectral basis with selected frequencies
2: if scalar fields needed then
3: Construct 3-form basis with same selected frequencies
4: end if
5: Construct structural coefficients Ck,ij with Eq. (7)
6: Initialize simulation
7: for each time step do
8: Time integration through explicit update or Eq. (8)/Eq. (9)
9: If needed, perform scalar advection in current velocity field

10: end for

inset (comparing, on a coarse grid for clarity,
an eigenvector field using a voxelized approxi-
mation of the boundary (top) vs. Hodge mod-
ification (bottom)) and in Fig. 5 for a basis el-
ement of vector fields. We also show the be-
havior of this Hodge star modification under re-
finement of the regular grid for a given contin-
uous elliptic domain Ω, resulting in very good
approximations of the eigenvectors. Note that
the Hodge star operators may involve division
by small denominators. A simple and typical thresholding of num-
bers below the average precision of the floating point representation
(i.e., 1e-8) to avoid division by zero is enough, and the eigenfunc-
tions with our specific tangential and normal boundary conditions
are computed without any extra preprocessing. In fact, large values
of the Hodge stars act as penalty: if a small fraction of the face is
inside the domain, then only an accordingly-small flux is allowed.

3.5 Variants and extensions

Our approach has been limited to Euler equations so far. However,
the use of spectral basis functions, the ability to deal with arbitrary
domains on a regular grid, and the functional-map nature of the
discretization makes for a very versatile framework in which ex-
tensions to the Euler fluid model can be easily incorporated. In all
cases, the pseudocode remains identical, as outlined in Algorithm 1.

Viscosity. While the ability to remove spurious energy dissipation
is important for the consistency of a numerical integrator with re-
spect to time step size, real fluids exhibit viscosity. Adding vis-
cosity is easily achieved: it corresponds to a dissipation of modal
amplitudes by a factor of κ2

i since the vector-valued Laplacian is
a diagonal matrix in the spectral domain as already leveraged in,
e.g., [Stam 2002]. Thus each modal magnitude vi evolves as

v̇i = −νκ2
i vi

for a viscosity coefficient of ν. Consequently, Navier-Stokes equa-
tions can be handled through an operator-splitting approach by up-
dating the modal magnitudes over each time interval h through

vt+hi ← e−νκ
2
ihvti .

Figure 4: Curved domain: While all other figures were achieved
on a regular grid, our approach applies to arbitrary domains, here
on the surface of a triangulated domain; a simple laminar flow with
initial horizontal velocity smoothly varying along the vertical direc-
tion quickly develops vortical structures on this complex surface.

Figure 5: Domain-altered Hodge stars: Our framework can gen-
erate vector bases satisfying prescribed boundary condition for ar-
bitrary domains embedded in a Cartesian grid. Hedge-hog visual-
ization of Ψ5 on a 2562 grid for three different 2D domain shapes,
obtained through a simple alteration of the Hodge star ? operator.

Magnetohydrodynamics (MHD). The equations for ideal, incom-
pressible MHD are easily expressed as a modification of the Euler
equations. The Lagrangian of MHD is

LMHD =
1

2
〈v,v〉 − 1

2
〈F,F〉

in appropriate units [Gawlik et al. 2011], where F is the magnetic
field which is advected by the velocity field v. As both v and F are
divergence-free, they can be discretized with our divergence-free
spectral bases. With such discrete velocity and magnetic fields, the
update rule in time to simulate the MHD equations closely resem-
bles the Euler fluid case:

v̇k = vtCkv − FtCkF,

Ḟk =
∑

ij
FivjCj,ki,

where the second equation performs the advection of F (encoded in
our spectral 2-form basis) in the current velocity v. It is easy to ver-
ify that the cross helicity

∫
M v · F=

∑
i viFi is exactly preserved

in our integrator as it is in the continuous world—a numerical prop-
erty rarely satisfied in existing integrators [Gawlik et al. 2011]. The
cross helicity is related to the topological linking of the magnetic
field and the fluid vorticity. Thus, its preservation prevents spu-
rious changes in the topology of the magnetic field lines over the
course of a simulation. This extension to MHD can also be applied
to a series of other Euler-Poincaré equations with advected param-
eters, modeling nematic liquid crystal flows and microstretch con-
tinua among others [Gawlik et al. 2011]. Note that buoyancy and
density fields can be handled in a similar fashion, whether they are
coupled with the dynamics or passively advected; they just need to
be smooth enough to be captured by low frequencies. Our frame-
work can therefore be used for, e.g., atmospheric simulations as
well [Desbrun et al. 2013].

Figure 6: Convergence of Laplacians: Our discretization of the
two Laplacians creates (vector and scalar) eigenfields that con-
verge under refinement of the regular grid used to compute them,
extending the linear convergence proved in [Ng et al. 2009]. Here,
particle-tracing visualization of the 15th eigenbasis for vector fields
on the ellipse (top) at resolution 302, 602, 1202, and 2402, and 15th

eigen function (bottom) at the same resolutions.



Subgrid scale modeling. Direct numerical solvers using Navier
Stokes equation require high resolutions to resolve the correct cou-
pling of large and small scale structures. Instead, subgrid scale
modeling requires much fewer degrees of freedom to capture the
correct large-scale structures by simulating the main effects of
the small subgrid scale structures without actually resolving them.
Among the many models that match empirical data well, the LANS-
α model (Lagrangian-Averaged-Navier-Stokes, see [Foias et al.
2002]) advects the velocity in a filtered velocity to better capture
the correct energy cascading. Since filtering is achieved through a
Laplacian-based Helmholtz operator, we can also use our spectral
approach to simulate this model with ease. The kinetic energy (i.e.,
Lagrangian) is now defined as

Lα-Euler =

∫
M

1

2
v2 +

α2

2
|∇v|2.

In our spectral bases, the α-model amounts to adding kinetic energy
terms scaled by κ2

i for the modal amplitudes vi. Hamilton’s princi-
ple for the modified Lagrangian leads to essentially the same update
rule as Navier-Stokes’, except that the structural coefficients are re-
placed by (1 + α2κ2

i )Ck,ij . Note that this modification keeps the
antisymmetry in j and k intact, and is therefore a trivial alteration
of the basic scheme.

Figure 7: Spectral energy distribution: With forcing terms keep-
ing the low wave number amplitudes fixed [Foias et al. 2002], our
3D reduced model applied to the LANS-α model of turbulence pro-
duces an average spectral energy distribution (blue) much closer
to the expected Kolmogorov distribution (black) than with the usual
Navier-Stokes equations (red).

Moving obstacles and external forces. For moving obstacles, in-
stead of calculating additional boundary bases as in [Treuille et al.
2006], we instead follow the simpler solution proposed in [De Witt
et al. 2012]: the difference in the normal component of the velocity
on the boundary is projected onto the velocity basis and subtracted
from v, resulting in a low-frequency field roughly satisfying the
boundary condition. For any external forces, e.g., buoyancy forces,
their effects on the time derivative of the modal amplitude vi of the
i-th frequency are simply calculated by their projection onto Ψi.
The results are visually correct even on complex shapes, and with
minimal computational overhead (see Fig. 10).

3.6 Generalization to other bases

While we provided detail on the construction of a variational
model-reduced integrator for fluid simulation using Laplace eigen-
vectors, one can easily adapt our approach to arbitrary basis func-
tions, even those extracted from a training set of fluid motions.
Suppose that we are given a set of scalar basis elements Φi (or-
thonormalized through the Gram-Schmidt procedure) and a set of
velocity basis elements Ψi. The Lie derivative matrixAwill still be
antisymmetric as long as Ψi’s are divergence-free. This means that
one can use existing finite element basis functions instead of our
Laplace eigenvectors—or even wavelet bases of H(div,Ω) (see,
e.g., [Urban 2002]) if spatially localized basis functions are sought

Figure 8: Smoke rising. Using only 230 modes (about 0.003% of
the full spectrum simulation), both [De Witt et al. 2012]’s (left) and
our approach already exhibit the expected volutes for a buoyancy-
driven flow over a sphere.

after to get a sparser advection. The key to the numerical benefits of
our variational approach is to ensure the anti-commutativity of the
Lie bracket in the evaluation of 〈Ai, [Aj , Ak]〉 (Eq. (7)) and the ad-
vection of other fields by the exponential map (or approximations
thereof, see App. D) of the matrix representing the Lie derivative
as done in MHD and complex fluids [Gawlik et al. 2011]. In a
way, the original non-spectral variational integrators can be seen as
a special case of our framework where Whitney basis functions are
used. However, viscosity can no longer be handled as easily in this
case as the Laplacian is not diagonal in general bases. Moreover,
the required number of degrees of freedom to produce smooth flows
may end up being high if the bases are arbitrary.

4 Results
Our results were generated on an Intel i7 laptop with 12GB RAM,
and visualized using our own particle-tracing and rendering tools.

Reduced vs. full simulation. In order to check the validity of our
reduced approach, we performed a stress test in a periodic 2D do-
main to visualize how the increase in the number of bases used in
our spectral integrator impacts the simulation over time. We se-
lected a band-limited initial velocity field at time t = 0 that only
contains non-zero components for the first 120 frequencies. We
then advected the fluid using our integrator, with fluid markers
initially set as two colored disks near the center. Because of the
propensity of vorticity to go to higher scales, our reduced approach
does not lead to the exact same position of the fluid markers af-
ter 12s of simulation if one uses only 120 bases. However, as the
number of bases increases to 300 or 500, the simulation quickly
captures the same dynamical behavior as a full variational integra-
tor with 2562 degrees of freedom, see Fig. 9. We demonstrate in
the accompanying video that our variational integrator also captures
the proper qualitative behavior of two merging vortices in contrast
to the result using [De Witt et al. 2012] which, instead, generates
several vortices (see supplementary video).

Figure 9: Convergence of simulation: A flow in a periodic do-
main is initialized with a band-limited velocity fields with 120 wave
number vectors. Fluid markers (forming a blue and red circle) are
added for visualization. After 12s of simulation, the results of our
reduced approach (left: 120, middle: 300 modes) vs. the full 2562

dynamics (right) are qualitatively similar.



Figure 10: Interactivity: We can also use the analytic expressions
for Ψk andCk,ij in a periodic 3D domain to handle a large number
of modes directly. The explicit update rule exhibits no artificial
damping of the energy as expected, but offers realtime flows.

Arbitrary domains. We also show in Figs. 3, 5, and 11 (2D) and
Figs. 1, 2, 8, 14, and 10 (3D) that the use of boundary condi-
tions embedded on regular grids leads to the expected visual be-
havior near domain boundaries, eliminating the staircase artifacts
of traditional immersed-grid methods. Our homogenized boundary
treatment obtains results similar
to those of unstructured meshes
while using only calculations that
are directly performed on regular
grids—thus requiring significantly
simpler, smaller, and more effi-
cient data structures. As shown in
the log(error)-log(resolution) plot
in the inset, our basis fields con-
verge with second order accuracy,
much faster than the boundary condition in [Batty et al. 2007] (the
latter may, in fact, not even converge in some cases as discussed
in [Ng et al. 2009]). Moreover, we also extended this approach not
just to scalar field, but vector fields. Our fluid dynamics is also con-
sistent across a wide range of temporal and spatial discretizations,
see Fig. 11. In addition, the regular grid structure also simplifies the
interaction with immersed solid objects as demonstrated in Fig. 14
through a flow induced by a scripted car turning around a corner;
interactive fluid stirring by a paddle manipulated by the user is also
easily achieved as shown in Fig. 10. We also show in Fig. 8 that
our method can handle the typical test case of smoke plume past a
sphere even at low resolution, and we can incorporate both free-slip
or no-slip boundary conditions. Finally, our spectral integrator can
be carried out in the same fashion on curved domains as well, since
the eigenvectors of the Laplace(-Beltrami) operator are no more dif-
ficult to compute on a triangulated surface; Fig. 4 shows a simple
laminar flow on the surface of the bunny model.

Advanced fluid models. We also extended our method to the
LANS-α turbulence model to better capture the spectral energy dis-
tribution with a small number of modes. On a 3D regular grid, we
performed a simulation as described in [Foias et al. 2002] by hold-
ing the low wave number components vi fixed for |κi| < 2 to act
as a forcing term, and running the simulation until t = 100. We
then extracted the average spectral energy distribution present be-
tween t= 33 to t= 100. We show in Fig. 7 that the Kolmogorov
“−5/3 law” is much better captured than with the usual Navier-
Stokes model, even for the low number of modes used in our spec-
tral context: the α-model produces a decay rate at high wave num-
bers much steeper than a Navier-Stokes simulation, allowing us to
cut off the higher frequencies at a lower threshold without signifi-
cant deviation from the spectral distribution. This indicates that our
approach consisting in a simple scaling of the structural coefficients
helps improving fluid simulation on coarse grids.

We also implemented our extension to MHD, and found the ex-
pected preservation of cross-helicity and energy. For comparison
purposes (see, e.g., [Gawlik et al. 2011]), we visualize our results
of the typical rotor test with 100 modes in Fig. 15. We finally show
in Figs. 2 and 8 that buoyancy forces are also easy to incorporate
by adding an upwards force proportional to the local smoke tem-

Figure 11: Robustness to resolution: With the homogenized
boundary condition on grids of resolution 402 (blue), 802 (green),
and 1602 (red), no staircase artifacts are observed, and the simu-
lation results are consistent across resolutions.

perature; the curl of this external force is projected onto the 1-form
basis functions, and used to update the vorticity.

Computational efficiency. Our use of model reduction via Lapla-
cian eigenbases provides a significantly more efficient alternative to
full simulators, obviously. Due to our variational treatment of time
integration, we also prevent many shortcomings of the previous re-
duced models as we ensure consistency of the results over a large
spectrum of spatial and temporal discretization rates, and maintain a
qualitatively correct behavior even on coarse grids. The efficiency
gain compared to the full variational simulation is apparent, be it
in 2D, curved 2D, or 3D. For instance, a full-blown 1282 grid takes
around 50s for the variational integrator to update one step (through
a Newton solver) in a typical simulation using the trapezoidal rule
update, while a 50-mode (resp., 100-mode and 200-mode) simula-
tion with our integrator takes only 0.098s (resp., 0.65s and 2.0s) for
complex boundaries (i.e., with dense structural coefficients), and
0.026s (resp., 0.070s, 0.28s) for simple box domains (with sparse
coefficients). Our Newton solver normally converges in a couple
of iterations depending on the time step size (which determines the
quality of the initial guess); for instance, the average in our 3D
bunny buoyancy test in Fig. 2 is below 3 iterations.

Selection of frequencies. Depending on how many modes the
user is willing to discard (and replace by wavelet noise or dynam-
ical texture for efficiency), the computational gains can be in the
order of several orders of magnitude, and this allows us to simu-
late flows at interactive or realtime rates (see Fig. 14, or Fig. 10 for
an example with a periodic 3D domain where we can compute the
eigenbases in closed form). Note however that our model-reduced
integrator suffers from the usual limitation of model reduction: the
complexity is actually growing quadratically (resp., cubically) with
the number of modes for sparse (resp., dense) structural coeffi-
cients. So our integrator is numerically efficient only for relatively
low mode counts. However, this is exactly the regime for which
one can achieve significant computational savings for very little vi-
sual degradation. Similar to [De Witt et al. 2012], we also found
that, when using very few low frequencies leads to unappealing
simulations, adding a few high frequencies (and thus, skipping a
large amount of medium frequencies) is enough to render an ani-
mation realistic: our integrator can use such a tailored frequency
range seamlessly, and the non-linear exchange between low and
high frequencies is enough to create much more complex patterns
that respect the expected motion of the flow, see Fig. 12. Fig 8 was
also done in this manner: the first 115 modes were used, the next
400 modes were skipped, and we added the next 115 modes to add
small scale effects. The use of subgrid scale modeling explained in
§3.5 is yet another way to make sure that the higher frequencies are
properly dealt with and provide a good, visually correct approxima-
tion to the fluid equations.

Time stepping. Finally, an important feature of our model-reduced
approach is its ability to handle both explicit and implicit integra-
tion. Implicit integration, using the midpoint rule (Eq. (8)) or the



trapezoidal rule (Eq. (9)), come with good numerical guarantees
due to the time reversibility. However, explicit integration is also
very convenient as it further reduces the time complexity of the
simulation. Nevertheless, an explicit integration has very little the-
oretical guarantees, and should only be used with care.

Quantitative experiments. One way to evaluate a reduced model
of fluids is to measure the evolution in time of the error of the ve-
locity field compared to a full-spectrum (spatial) simulation. Using
the exact same Laplacian eigenvectors representing only 0.003%
of the modes for the 3D simulation of the rising smoke in Fig. 8,
both our structural coefficients and [De Witt et al. 2012]’s provide a
slowly increasing error as shown in Fig. 13 (top), with ours showing
an improvement of around 20%; the L∞ shows a more pronounced
improvement as well. The same experiment in 2D for 2 vortices
exhibits the same trend (Fig. 13, bottom), with a more pronounced
difference given that our approach leads to the two vortices merg-
ing as in the ground truth simulation, while [De Witt et al. 2012]’s
generates multiple vortices (see supplementary video).

5 Conclusion

We have introduced a variational integrator for fluid simulation in
reduced coordinates. By restricting the variations in Hamilton’s
principle to a low-dimensional space spanned by low-frequency
divergence-free velocity fields, our method exhibits the properties
of variational integrators in capturing the qualitatively correct be-
havior of ideal incompressible fluids (such as Kelvin’s circulation
and energy preservation) while greatly reducing the computational
cost. We further facilitated its use in graphics applications by pro-
viding a method to calculate the necessary bases for arbitrary do-
mains embedded in a regular grid through a simple and novel alter-
ation to the Hodge star operators at the domain’s boundary to offer
sub-grid accuracy at no extra cost. Finally, we demonstrated the
versatility of our integrator by straightforward extensions to mov-
ing boundary, magnetohydrodynamics, and turbulence models.

Discussion. Algorithmically, our method resembles all other
model-reduced fluid methods. However, it offers a unified formu-
lation of model-reduced fluid flows for arbitrary basis functions,
and provides structural coefficients without the artifacts of [De Witt
et al. 2012]. It only requires a regular grid to encode arbitrary
domains with the same convergence rate as [Ng et al. 2009], but
also allows for the computation of vorticity bases. DEC operators
for the computation of Laplacians allow full control over boundary
conditions, for arbitrary topology; but any other discrete operators
can easily be used instead. Our nonlinear update rules enforce a
discrete form of Kelvin’s theorem and time reversibility—and thus
energy preservation. They also offer robustness to time and space
discretization rates, an important feature when previewing results.

Figure 12: Frequency shaping: For the same setup as Fig. 2, using
only the lowest 10 eigenbasis functions for vector fields leads to a
very limited motion. However, adding another 10 basis functions
of high frequencies creates a much more detailed animation at very
little cost, instead of using all the frequencies from low to high.

Figure 13: Relative errors. Relative L2 (left) and L∞ errors
measured with respect to a full-spectrum (spatial) simulation are
systematically improved with our structural coefficients compared
to [De Witt et al. 2012], even if the same time integration is used to
allow for a fair comparison. Top: errors for the rising smoke exam-
ple of Fig. 8; bottom: errors for two merging vortices (see video).

Figure 14: Immersed moving objects. As the car makes a right
turn, the low frequency motion of the air displaced around it lifts the
dead leaves. The velocity field above is visualized through arrows.

One can also employ explicit integration to further reduce compu-
tational complexity. Any application seeking low time complexity
of fluid simulation will benefit from our reduced space approach,
in particular, real-time interactive simulation or tools for design-
ing artist-driven coarse simulation. Even production-quality smoke
or fluid animation may be achieved without having recourse to a
full resolution simulation through existing post-process curl noise
techniques. Moreover, our modified Hodge star can be used in a va-
riety of geometry processing applications where subgrid accuracy
on coarse grids is desirable.

Future work. One intriguing extension is the use of reduced bases
with spatial locality, as our integrator is not restricted to any particu-
lar set of bases functions. For instance, using wavelets for vorticity
may offer optimal sparsity in the structural coefficients if we can
address the challenge of adapting the frequency to the local fea-
ture size of the domain. Improving scalability (through sparsity in
structural coefficients or pseudo-spectral methods) and better adap-
tivity to moving/deforming solid boundaries (through spatial local-
ity) may then offer a wider applicability for model reduced meth-
ods. Another possible future extension is to incorporate free surface
boundary conditions through our modified Hodge star, combined
with wavelet representations for the volume of fluid per cell.
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A Computing spectral bases
In this appendix, we describe how to compute the spectral bases for
both vector fields and density fields on a meshM.

Discrete Laplacians. Finding our spectral bases first requires dis-
cretizing both the scalar Laplacian ∇·∇ and the vector Laplacian
−∇×∇×+∇∇· on the domainM. Discretization of these opera-
tors on arbitrary simplicial complexes is well documented [Desbrun
et al. 2008; Elcott and Schröder 2006], and only involves topolog-
ical operators d1 and d2 deriving from the mesh connectivity, and
diagonal “Hodge star” operators ?1, ?2, and ?3 based on local mea-
sures of M and its circumcentric dual, resulting in the following
symmetric second-order operators:

?3∆3 ≡ ?3d2 ?−1
2 dt2?3, ?2∆2 ≡ dt2 ?3 d2+?2d1 ?

−1
1 dt1 ?2 .

Note that d and ? are even simpler on regular grids, even with the
alteration we introduced in 3.4.

Figure 15: MHD rotor test: The rotor test for magnetohy-
drodynamics consists of a dense rotating disk of fluid in an
initially uniform magnetic field (left-right, top-middle: t =
0.042, 0.126, 0.210, 0.336). Our spectral integrator captures the
correct behavior (see full dynamics in [Gawlik et al. 2011]) even
with only 100 modes. Discrete energy (blue) and cross-helicity
(red) are, as predicted, preserved over time (bottom).

Boundary conditions. The canonical boundary conditions of ve-
locity fields in fluid simulation for graphics purposes are no-transfer
(i.e., the normal component vn of the velocity along ∂M must be
zero) and free-slip (i.e., the derivative of the tangential velocity field
along the boundary normal ∂vt/∂n must be zero as well). To en-
force these conditions, we thus add the conditions that the flux of
Ψi on every boundary face is zero, and that the circulations along
the (interior half) boundary of the Voronoi face associated with each
boundary edge is also zero (i.e, we simply set the values of ?−1

1 as
zeros for all the edges adjacent to the boundary faces to compute
∆2). As for the eigenfunctions Φi of ∆3, we use either Dirich-
let boundary conditions f |∂M = 0 or Neumann boundary condi-
tions ∂f

∂n
|∂M = 0, by considering boundary cell values or boundary

gradients as null. If other, non-homogeneous boundary conditions
(such as influx or outflux conditions) are required, then one must
add an additional harmonic (zeroth frequency) component that sat-
isfies the given boundary conditions.

Eigen computations. Once the Laplacians with proper boundary
conditions are assembled, we can compute their low-frequency
eigenfields using a simple Lanczos algorithm since these operators
are symmetric. The constant eigenbases from the kernel of ∆3 can
be safely omitted by setting zero values on boundaries, since a con-
stant scalar function is unchanged when advected by a divergence-
free velocity field. Note that, as mentioned in §3.1, some of the
eigenfields Ψi will be of the form 1/µjδΦj : indeed, δΦi for i 6= 0
is an eigenfunction of ∆2 since

∆2δΦj = δ∆3Φj = δ(−µ2
jΦj) = −µ2

jδΦj .

These gradient fields are easily identifiable by checking their di-
vergence. Note finally that in theory, there could be cases where
κ2
i =µ2

j for multiple pairs of indices i and j. While in practice this
is very unlikely to happen, one can protect against this rare event by
replacing one of the corresponding Ψi by δΦj/µj , and replacing
the other eigenvectors of this eigenvalue through a Gram-Schmidt
process to form an orthonormal basis again.



Comments. We note that the approach we described above to com-
pute the eigen bases for our fluid integrator is far from unique. For
example, the β1 harmonic vector fields are obtained as the eigen-
vectors associated with the eigenvalue 0, but we could have also
computed the harmonic function dual to each homology generator
via simple sparse linear systems instead [Tong et al. 2006]. Ad-
ditionally, the vector field basis Ψi could be computed through its
vector potential ψi instead: indeed, these vector potential 1-forms
are eigenvectors of the 1-form Laplacian ∆1, and boundary edge
circulations as well as divergence on boundary dual cell divergence
are assumed null to guarantee no-transfer and free-slip conditions.
The curl of these 1-form basis functions are then, by construction,
the flux-based Ψi basis functions. Finally, we point out that our
approach is purposely different from what is proposed in [De Witt
et al. 2012], as they use an eigendecomposition of dδ instead (lever-
aging the divergence-freeness of the vector fields). However, this
simplified operator has a much larger null space that includes also
curl-free fields, requiring many more eigenvectors to be computed
via Lanczos iterations to generate divergence-free fields.

B Analysis of structural coefficients Ck

For simplicity, we use the periodic domain [0, 1]3, i.e., the flat 3D
torus. The eigenfields can be expressed using complex numbers as

Ψi(x) = wie
ki·x,

where  is the unit imaginary number, x is the 3D coordinates, wi

is a unit vector, and ki is the wave number vector (i.e., with |ki| =
κi). The divergence of the basis function is thus

divΨi(x) = ki ·wie
ki·x,

while the curl is expressed as

curlΨi(x) = ki ×wie
ki·x.

Since divΨi = 0 means that ki ·wi = 0, there are two independent
w’s for each k in the basis. We can thus compute the structural
coefficients Cc,ab from Eq. (7) in closed form, by the integral of

(∇×Ψa) · (Ψ∗c×Ψb) = (ka×wa) · (wc×wb)e
(ka+kb−kc)·x,

where superscript ∗ denotes complex conjugation. Note that
nonzero coefficients (ka×wa)·(wc×wb) only exist when kc =
ka+kb, and they advect real fields to real fields (whose coefficients
satisfy vk,w = v∗−k,w). It indicates that |kb|2Cc,ab = |ka|2Cc,ba
is not true in general in 3D, contrary to the claim in [De Witt et al.
2012]; a simple counterexample is ka=2π(0, 2, 3), wa=(1, 0, 0),
kb = 2π(1, 1, 0), and wb = (0, 0, 1). Moreover, while Cc,aa = 0
indeed for this domain since wc · (2ka) = 0, this property will
no longer hold for an arbitrary domain. Thankfully, our variational
integrator does not depend on the eigenmodes being steady flows,
so these symmetries (or rather, lack thereof) are inconsequential.

C Kelvin’s circulation theorem
Ideal, incompressible fluids have a conserved momentum [Chorin
and Marsden 1979] given by the integrated circulation of the fluid
around a closed curve which is advected by the flow. This fact is
known as Kelvin’s circulation theorem. Methods such as [Elcott
et al. 2007] and [Pavlov et al. 2011] are constructed so as to con-
serve a discretized form of this conserved momentum. Our spectral
method also obeys a form of Kelvin’s theorem as follows. We can
define generalized “spectral” curves as spectral dual 1-chains (also
called 1-currents [Desbrun et al. 2008]) of the form:

Γ =
∑
i

γi ?2 Ai. (10)

The above dual 1-chain expression always represents a closed
curve, because each Ai corresponds to a closed (divergence-free)

2-form, which means the dual 1-chain is boundaryless. A pairing
between a 2-form and a generalized loop is defined as expected:

〈A,Γ〉 =

〈∑
i

viAi,
∑
j

γj ?2 Aj

〉
=
∑
i

viγi. (11)

The Lie advection of the generalized curve along the velocity field

Γ̇ = −[A,Γ] (12)

indicates that the coefficients {γi}i must evolve such that

γ̇k = −
∑
i,j

γivj

∫
M

Ψk · (∇× (Ψi ×Ψj))

=
∑
i,j

γivj

∫
M

(∇×Ψk) · (Ψj ×Ψi) =
∑
i,j

γivjCj,ki.

Thus, the spectral version of Kelvin’s theorem holds since

d

dt
〈A,Γ〉 =

∑
i

(v̇iγi + viγ̇i)

=
∑
i

vtCivγi+
∑
i

vi
∑
j,k

vkγjCk,ij

=
∑
i,j,k

vjCi,jkvkγi−
∑
i,j,k

vjvkγiCi,jk = 0.

In the above derivation, dummy index variables are swapped and
the identity Ck,ij = −Cj,ik is used.

D Temporal discretization
A fully discrete (in space and time) treatment of our variational
integrator is easily achieved using the Hamilton-Pontryagin princi-
ple [Kharevych et al. 2006], where Lagrange multipliers µk enforce
that A is indeed the Eulerian velocity of state q. If one denotes by
h is the time step, Ak the velocity field between time k & state
qk and time k+1 & state qk+1, the discrete Hamilton-Pontryagin
action between t = 0 and t = Nh is expressed as

Sd =

N−1∑
k=0

1

2
〈Ak, Ak〉h+ 〈µk, τ−1(qk+1(qk)−1)− hAk〉.

The map τ must convert an element of the Lie algebra to a Lie
group element, thus making Ak the Eulerian velocity between time
tk and tk+1; instead of the usual exponential map which is com-
putationally difficult to handle, we approximate it to be the Cayley
transform τ(A)=(I−A/2)−1(I+A/2), as it efficiently maps anti-
symmetric matrices to orthogonal matrices. Taking variations with
respect to µk, we recover the expected group element update rule

qk+1 = τ(hAk)qk.

Variations with respect to Ak show that the multiplier is actually
the momentum: µk = Ak. Finally variations with respect to qk

restricted to δqk = Bkqk with Bk in the Lie algebra (to enforce
Lin constraints) yield

〈µk−1, (I − hAk−1/2)Bk(I + hAk−1/2)〉

= 〈µk, (I + hAk/2)Bk(I − hAk/2)〉.

Omitting the cubic terms inO(h2) still preserves a discrete Kelvin’s
theorem, so we follow the suggestion in [Gawlik et al. 2011] and
simplify the update rule to

∀Bk, 〈Ak−1, Bk +
h

2
[Bk, Ak−1]〉 = 〈Ak, Bk +

h

2
[Bk,−Ak]〉,

which reduces to the trapezoidal rule with Ak =
∑
i v
k
i Ai and an

arbitrary Bk=
∑
i b
k
iAi.


